Compression layout for network visualization based on node importance for community structure
-
摘要:
为有效展示网络的中观尺度结构,将力导引布局算法与网络社团结构特征相结合,提出了一种基于社团结构节点重要性的网络可视化压缩布局方法。首先,采用Louvain算法对网络进行多粒度社团结构划分;然后,通过计算社团结构中节点的拓扑势评估节点的重要性,保留社团结构中的重要节点,合并边缘节点,实现社团结构压缩;最后,采用力导引布局算法布局压缩网络节点,实现网络可视化的压缩布局。实验结果表明:所提方法在压缩节点和连边规模的基础上,能够完整保留原始网络的社团构成,并且通过保留社团结构代表点可以清晰展示社团内部结构,突出社团和重要节点在网络结构中的位置和作用。
Abstract:In order to effectively display the mesoscale structure of the network, the force-directed layout algorithm is combined with the network community structure features, and a network visualization compression layout method based on the importance of the node in the community structure is proposed. First, the Louvain algorithm is used to divide the network into multi-granular community structure. Then, the importance of the nodes is evaluated by calculating the topological potential of the nodes in the community structure. Through preserving the important nodes, the community is compressed, while the boundary nodes are merged. Finally, the force-directed layout algorithm is adopted to layout the network to achieve a visual compression layout. The experimental results show that the proposed method can completely preserve the original network community structure on the basis of compression nodes and connected edges, and can clearly display the internal structure of the community by retaining the representative points of the community structure, highlighting the position and role of the community and important nodes in the network structure.
-
表 1 压缩结果对比
Table 1. Comparison of compression results
数据集 方法 节点数 连边数 平均聚类系数 社团数 dolphin 压缩前 62 159 0.303 5 方法1 12 29 0.716 3 方法2 12 29 0.716 3 本文方法 13 33 0.674 5 football 压缩前 115 613 0.403 10 方法1 23 100 0.515 9 方法2 23 96 0.570 8 本文方法 26 97 0.534 10 karat 压缩前 34 78 0.588 4 方法1 7 17 0.867 3 方法2 7 17 0.867 3 本文方法 8 18 0.733 4 -
[1] 张喜涛, 吴玲达, 于少波.面向多层网络可视化的多力导引节点自动布局算法[J].计算机辅助设计与图形学学报, 2019, 31(4):639-646. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201904015ZHANG X T, WU L D, YU S B.A multi-force directed layout algorithm for multilayer networks visualization[J].Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4):639-646(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201904015 [2] 姚中华, 吴玲达, 宋汉辰.网络图中边集束优化问题[J].北京航空航天大学学报, 2015, 41(5):871-878. https://bhxb.buaa.edu.cn/CN/abstract/abstract13248.shtmlYAO Z H, WU L D, SONG H C.Problems of network simplification by edge bundling[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5):871-878(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13248.shtml [3] LESKOVEC J, FALOUTSOS C.Sampling from large graphs[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM, 2006: 631-636. [4] 杜晓林.大规模社会网络可视化若干问题及算法研究[D].哈尔滨: 哈尔滨工业大学, 2015: 18-35. http://cdmd.cnki.com.cn/Article/CDMD-10213-1015957412.htmDU X L.Research on visualization problems and algorithms for large scale social network[D].Harbin: Harbin Institute of Technology, 2015: 18-35(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1015957412.htm [5] GILBERT A C, LEVCHENKO K.Compressing network graphs[C]//Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM, 2004: 1-10. [6] ALMENDRAL J A, CRIADO R, LEYVA I, et al.Introduction to focus issue:Mesoscales in complex networks[J]. Chaos, 2011, 21(1):016101. doi: 10.1063/1.3570920 [7] EADES P.A heuristic for graph drawing[J].Congressus Numerantium, 1984, 42:149-160. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cs%2f0212046 [8] KAMADA T, KAWAI S.An algorithm for drawing general undirected graphs[J].Information Processing Letters, 1989, 31(1):7-15. doi: 10.1016-0020-0190(89)90102-6/ [9] DAVIDSON R, HAREL D.Drawing graphs nicely using simulated annealing[J].ACM Transactions on Graphics, 1996, 15(4):301-331. doi: 10.1145/234535.234538 [10] FRUCHTERMAN T M J, REINGOLD E M.Graph drawing by force-directed placement[J].Software-Practice and Experience, 1991, 21(11):1129-1164. doi: 10.1002/spe.4380211102 [11] 水超, 陈洪辉, 陈涛, 等.力导向模型的复杂网络社区挖掘算法[J].国防科技大学学报, 2014, 36(4):163-168. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201404028SHUI C, CHEN H H, CHEN T, et al.A community detect algorithm on force-directed model[J].Journal of National University of Defense Technology, 2014, 36(4):163-168(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201404028 [12] ZHANG X T, WU L D, YU S B.Layer-edge patterns exploration and presentation in multiplex networks:From detail to overview via selections and aggregations[J].Electronics, 2019, 8(4):387. doi: 10.3390/electronics8040387 [13] 王晓华, 杨新艳, 焦李成.基于多尺度几何分析的复杂网络压缩策略[J].电子与信息学报, 2009, 31(4):968-972. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk200904048WANG X H, YANG X Y, JIAO L C.Compression of complex networks based on multiscale geometric analysis[J].Journal of Electronics & Information Technology, 2009, 31(4):968-972(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk200904048 [14] 李甜甜, 卢罡, 许南山, 等.基于k-core的大规模复杂网络压缩布局算法[J].计算机工程, 2016, 42(5):308-312. doi: 10.3969/j.issn.1000-3428.2016.05.054LI T T, LU G, XU N S, et al.Compressing layout algorithm for large complex network based on k-core[J].Computer Engineering, 2016, 42(5):308-312(in Chinese). doi: 10.3969/j.issn.1000-3428.2016.05.054 [15] 肖俐平, 孟晖, 李德毅.基于拓扑势的网络节点重要性排序及评价方法[J].武汉大学学报(信息科学版), 2008, 33(4):379-383. http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200804011XIAO L P, MENG H, LI D Y.Approach to node ranking in a netwrok based on topology potential[J].Geomatics and Information Science of Wunan University, 2008, 33(4):379-383(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/whchkjdxxb200804011 [16] 王戬.一种基于拓扑势的社会网络节点重要性评估方法[D].哈尔滨: 哈尔滨工程大学, 2015: 18-30. http://cdmd.cnki.com.cn/Article/CDMD-10217-1018047823.htmWANG J.Evaluating the importance of nodes in social networks based on topology potential[D].Harbin: Harbin Engineering University, 2015: 18-30(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1018047823.htm [17] GACH O, HAO J K.Improving the Louvain algorithm for community detection with modularity maximization[C]//International Conference on Artificial Evolution (Evolution Artificielle).Berlin: Springer, 2013: 145-156.