留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种低成本的机器人室内可通行区域建模方法

张釜恺 芮挺 何雷 杨成松

张釜恺, 芮挺, 何雷, 等 . 一种低成本的机器人室内可通行区域建模方法[J]. 北京航空航天大学学报, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393
引用本文: 张釜恺, 芮挺, 何雷, 等 . 一种低成本的机器人室内可通行区域建模方法[J]. 北京航空航天大学学报, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393
ZHANG Fukai, RUI Ting, HE Lei, et al. A low-cost indoor passable area modeling method for robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393(in Chinese)
Citation: ZHANG Fukai, RUI Ting, HE Lei, et al. A low-cost indoor passable area modeling method for robots[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2470-2478. doi: 10.13700/j.bh.1001-5965.2019.0393(in Chinese)

一种低成本的机器人室内可通行区域建模方法

doi: 10.13700/j.bh.1001-5965.2019.0393
详细信息
    作者简介:

    张釜恺  男, 硕士研究生。主要研究方向:计算机视觉、VSLAM

    芮挺  男, 博士, 教授, 硕士生导师。主要研究方向:图像处理、模式识别、人工智能

    何雷  男, 博士, 讲师, 硕士生导师。主要研究方向:系统科学, 智能算法

    杨成松  男, 博士, 讲师。主要研究方向:图像处理、虚拟现实

    通讯作者:

    芮挺. E-mail: rtinguu@sohu.com

  • 中图分类号: TP242;TP37

A low-cost indoor passable area modeling method for robots

More Information
  • 摘要:

    基于单目视觉的同步定位与建图(SLAM)是机器人领域中的一项热门技术。然而,在场景建图方面,由于其计算量较大,各主流方法还无法在低运算能力的平台上实现实时的场景建模。针对室内环境与小型机器人的特定情况,提出了一种新的可通行区域建模方法。该方法建立在单目特征点SLAM的基础上,通过HSV色彩空间内的图像自适应阈值分割获取地面分割图像,并与SLAM生成的稀疏点云进行交叉比对,进而获取地平面与准确的地面分割区域,再将地面分割区域反投影到地平面上,获取地面的稠密建模。在室内场景的实验中,所提方法的平均运算速度能达到21帧/s,速度约为ORB-SLAM的70%,能够满足移动平台的实时性要求。对于地平面位置的还原平均误差为5.8%,地面上道路宽度的建模误差在3.5%~12.8%。

     

  • 图 1  本文方法整体流程图

    Figure 1.  Flowchart of proposed method

    图 2  地面区域的分割示例

    Figure 2.  Example of ground area segmentation

    图 3  被略去的地面分割图像示例

    Figure 3.  An example of excluded ground segmentation image

    图 4  将分割图像投影到地平面对地面建模

    Figure 4.  Projecting segmented images to ground plane for ground modeling

    图 5  实验环境

    Figure 5.  Experimental environment

    图 6  办公室环境与机器人运动轨迹

    Figure 6.  Office environment and robot movement track

    图 7  本文方法得到的办公室稠密地面建模与非地面稀疏点云

    Figure 7.  Office dense ground modeling and non-ground sparse point cloud obtained by proposed method

    图 8  ORB-SLAM得到的办公室稀疏点云

    Figure 8.  Office sparse point cloud obtained by ORB-SLAM

    图 9  教室环境与机器人运动轨迹

    Figure 9.  Classroom environment and robot movement track

    图 10  本文方法得到的教室稠密地面建模与非地面稀疏点云

    Figure 10.  Classroom dense ground modeling and non-ground sparse point cloud obtained by proposed method

    图 11  ORB-SLAM得到的教室稀疏点云

    Figure 11.  Classroom sparse point cloud obtained by ORB-SLAM

    图 12  办公室通路宽度测量

    Figure 12.  Path width measurement of office

    图 13  教室通路宽度测量

    Figure 13.  Path width measurement of classroom

    图 14  地面倒影对图像分割的影响

    Figure 14.  Effect of ground reflection on image segmentation

    图 15  地面不均匀纹理对图像分割的影响

    Figure 15.  Effect of uneven texture of ground on image segmentation

    表  1  平均每帧运算时间

    Table  1.   Average operation time per frame

    模块 运算时间/ms
    本文方法 ORB-SLAM
    SLAM进程 31.21 32.30
    图像分割 5.16
    地面点云获取 1.54
    拟合平面 0.13
    分割图像筛选 1.84
    地面稠密建模 7.80
    总计 47.68 32.30
    下载: 导出CSV

    表  2  地平面位置还原精度

    Table  2.   Accuracy of ground plane position restoration

    场景 实际距离/cm 拟合地平面距离/cm 误差/%
    办公室 42.0 43.6 3.81
    教室 42.0 38.7 -7.86
    下载: 导出CSV

    表  3  办公室地面建模精度

    Table  3.   Ground modeling accuracy of office

    位置 实际距离/cm 模型距离/cm 误差/%
    a 135 129 4.4
    b 112 108 3.5
    c 128 116 10.3
    下载: 导出CSV

    表  4  教室地面建模精度

    Table  4.   Ground modeling accuracy of classroom

    位置 实际距离/cm 模型距离/cm 误差/%
    a 82 85 3.6
    b 77 81 5.2
    c 70 61 12.8
    下载: 导出CSV
  • [1] LI Z, TANG J.Weakly supervised deep metric learning for community-contributed image retrieval[J].IEEE Transactions on Multimedia, 2015, 17(11):1989-1999. doi: 10.1109/TMM.2015.2477035
    [2] LIU H, ZHANG G, BAO H.A survey of monocular simultaneous localization and mapping[J].Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6):855-868. https://www.researchgate.net/publication/305166339_A_survey_of_monocular_simultaneous_localization_and_mapping
    [3] TURAN M, ALMALIOGLU Y, ARAUJO H, et al.A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots[J].International Journal of Intelligent Robotics and Applications, 2017, 1(4):399-409. doi: 10.1007/s41315-017-0036-4
    [4] JAN S, GUMHOLD S, CREMERS D.Real-time dense geometry from a handheld camera[C]//Proceedings of the Pattern Recognition-32nd DAGM Symposium.Berlin: Springer, 2010: 22-24.
    [5] ENGEL J, KOLTUN V, CREMERS D.Direct sparse odometry[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 40(3):611-625. http://cn.bing.com/academic/profile?id=baa8d09846cd2fd94b28e03c489ee5c9&encoded=0&v=paper_preview&mkt=zh-cn
    [6] KIM J H, CADENA C, REID I.Direct semi-dense SLAM for rolling shutter cameras[C]//Proceedings of the IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2016: 1308-1315.
    [7] BAILEY T, NIETO J, GUIVANT J, et al.Consistency of the EKF-SLAM algorithm[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway, NJ: IEEE Press, 2006: 9-15.
    [8] PIRKER K, MATTHIAS R, BISCHOF H.CD-SLAM-Continuous localization and mapping in a dynamic world[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Piscataway, NJ: IEEE Press, 2011: 25-30.
    [9] GEE A P.MAYOL-CUEVAS W.Real-time model-based SLAM using line segments[C]//Proceedings of the International Symposium on Visual Computing.Berlin: Springer, 2006: 354-363.
    [10] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J.DTAM: Dense tracking and mapping in real-time[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV).Piscataway, NJ: IEEE Press, 2011: 6-13.
    [11] ENGEL J, SCHÖPS T, CREMERS D.LSD-SLAM: Large-scale direct monocular SLAM[C]//Proceedings of the European Conference on Computer Vision (ECCV).Berlin: Springer, 2014: 834-849.
    [12] TRIGGS B, MCLAUCHLAN P F, HARTLEY R I, et al.Bundle adjustment a modern synthesis[C]//Proceedings of the Vision Algorithms: Theory and Practice.Berlin: Springer, 2000: 298-372.
    [13] ULRICH I, NOURBAKHSH I R.Appearance-based place recognition for topological localization[C]//Proceedings of the International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2000: 1023-1029.
    [14] DAVISON A J, REID I D, MOLTON N D, et al.MonoSLAM:Real-time single camera SLAM[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6):1052-1067. doi: 10.1109/TPAMI.2007.1049
    [15] KLEIN G, MURRAY D.Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality.Piscataway, NJ: IEEE Press, 2007: 225-234.
    [16] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D.ORB-SLAM:A versatile and accurate monocular SLAM System[J].IEEE Transactions Robotics, 2015, 31(5):1147-1163. doi: 10.1109/TRO.2015.2463671
    [17] NEWCOMBE R A, DAVISON A J.Live dense reconstruction with a single moving camera[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE Press, 2010: 1498-1505.
    [18] MURARTAL R, TARDOS J D.Probabilistic semi-dense mapping from highly accurate feature-based monocular SLAM[C]//Proceedings of the Robotics Science and Systems, 2015.
    [19] HINZMANN T, SCHNEIDER T, DYMCZYK M, et al.Robust map generation for fixed-wing UAVs with low-cost highly-oblique monocular cameras[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems.Piscataway, NJ: IEEE Press, 2016: 3261-3268.
    [20] 蒙山, 唐文名.单目SLAM直线匹配增强平面发现方法[J].北京航空航天大学学报, 2017, 43(4):660-666. https://bhxb.buaa.edu.cn/CN/abstract/abstract14265.shtml

    MENG S, TANG W M.Monocular SLAM linear matching enhanced plane discovery method[J].Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):660-666(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14265.shtml
    [21] VON STUMBERG L, USENKO V, ENGEL J, et al.Autonomous exploration with a low-cost quadrocopter using semi-dense monocular SLAM[C]//Processing of the European Conference on Mobile Robots, 2017.
    [22] 蒋林, 郭晨, 朱志超.嵌入式平台上的三维重建算法研究[J].机械设计与制造, 2018, 330(8):264-266. http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201808073

    JIANG L, GUO C, ZHU Z C.Research on 3D reconstruction algorithm based on embedded platform[J].Machinery Design & Manufacture, 2018, 330(8):264-266(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxsjyzz201808073
    [23] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for scene segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [24] 黄寅.基于HSV颜色空间与形态学的车辆目标分割算法[J].大庆师范学院学报, 2017, 37(6):11-15. http://d.old.wanfangdata.com.cn/Periodical/dqgdzkxxxb201706003

    HUANG Y, Vehicle target segmentation algorithm based on HSV color space and morphology[J].Journal of Daqing Normal University, 2017, 37(6):11-15(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqgdzkxxxb201706003
    [25] 闫敬文.数字图像处理:MATLAB版[M].北京:国防工业出版社, 2011:125-127.

    YAN J W.Digital image processing by MATLAB[M].Beijing:National Defence Industry Press, 2011:125-127(in Chinese).
    [26] 李鹏飞, 吴海娥, 景军锋, 等.点云模型的噪声分类去噪算法[J].计算机工程与应用, 2016, 52(20):188-192. doi: 10.3778/j.issn.1002-8331.1603-0354

    LI P F, WU H E, JING J F, et al.Noise classification and denoising algorithm for point cloud model[J].Computer Engineering and Applications, 2016, 52(20):188-192(in Chinese). doi: 10.3778/j.issn.1002-8331.1603-0354
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  174
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 录用日期:  2019-08-18
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答