留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六自由度压电隔振平台面向控制的模态分析与动力学建模

于帅彪 张臻 周克敏

于帅彪, 张臻, 周克敏等 . 六自由度压电隔振平台面向控制的模态分析与动力学建模[J]. 北京航空航天大学学报, 2020, 46(6): 1169-1176. doi: 10.13700/j.bh.1001-5965.2019.0402
引用本文: 于帅彪, 张臻, 周克敏等 . 六自由度压电隔振平台面向控制的模态分析与动力学建模[J]. 北京航空航天大学学报, 2020, 46(6): 1169-1176. doi: 10.13700/j.bh.1001-5965.2019.0402
YU Shuaibiao, ZHANG Zhen, ZHOU Keminet al. Control-oriented modal analysis and dynamic modeling for six-degree-of-freedom piezoelectric vibration isolation platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1169-1176. doi: 10.13700/j.bh.1001-5965.2019.0402(in Chinese)
Citation: YU Shuaibiao, ZHANG Zhen, ZHOU Keminet al. Control-oriented modal analysis and dynamic modeling for six-degree-of-freedom piezoelectric vibration isolation platform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1169-1176. doi: 10.13700/j.bh.1001-5965.2019.0402(in Chinese)

六自由度压电隔振平台面向控制的模态分析与动力学建模

doi: 10.13700/j.bh.1001-5965.2019.0402
基金项目: 

国家自然科学基金 61433011

详细信息
    作者简介:

    于帅彪   男, 硕士研究生。主要研究方向:智能结构建模控制

    张臻   男, 博士, 讲师, 硕士生导师。主要研究方向:智能结构动力学与控制、迟滞非线性系统建模与控制

    周克敏   男, 博士, 教授, 博士生导师。主要研究方向:鲁棒控制、多目标优化、故障诊断与容错控制、迟滞非线性控制等

    通讯作者:

    张臻.E-mail: zhangzhen@buaa.edu.cn

  • 中图分类号: TP273

Control-oriented modal analysis and dynamic modeling for six-degree-of-freedom piezoelectric vibration isolation platform

Funds: 

National Natural Science Foundation of China 61433011

More Information
  • 摘要:

    六自由度压电隔振平台各通道之间存在的强耦合性以及压电作动器固有的迟滞非线性都对系统动力学建模提出了挑战。为此,基于模态分析技术对六自由度压电隔振平台开展面向控制的非线性动力学建模研究。在充分考虑压电作动器的迟滞非线性后,采用模态坐标变换方法建立了隔振平台Hammerstein非线性动力学模型,包含了输入端的静态迟滞非线性子系统、解耦的模态方程组以及模态正/反变换矩阵。通过实验测量方法辨识得到模态方程中的参数,采用MPI模型辨识得到静态迟滞非线性子系统,并经过逆补偿控制实验验证了迟滞模型的正确性。基于迟滞逆补偿策略辨识得到模态反变换矩阵。最终建立了平台的动力学模型,为后续的控制奠定了良好的基础。

     

  • 图 1  六自由度压电隔振平台

    Figure 1.  Six-degree-of-freedom piezoelectric vibration isolation platform

    图 2  六自由度压电隔振平台平面图

    Figure 2.  Planar graph of six-degree-of-freedom piezoelectric vibration vibration isolation platform

    图 3  模块化隔振单元

    Figure 3.  Modular vibration isolation unit

    图 4  作动器柔性铰链

    Figure 4.  Actuator flexible hinge

    图 5  被动支撑元件结构与实物图

    Figure 5.  Passive support assembly structure and photo

    图 6  隔振平台Hammerstein模型

    Figure 6.  Hammerstein model of vibration isolation platform

    图 7  模态变换后的等效模型

    Figure 7.  Equivalent model after modal transformation

    图 8  模态控制流程

    Figure 8.  Modal control process

    图 9  模态测试系统框图

    Figure 9.  Block diagram of modal test system

    图 10  隔振平台划分网格图

    Figure 10.  Grid diagram of vibration isolation platform

    图 11  隔振平台振型辨识结果

    Figure 11.  Vibration isolation platform vibration type identification results

    图 12  压电作动器迟滞模型建模结果

    Figure 12.  Hysteresis modeling results of piezoelectric actuator

    图 13  逆补偿实验结果

    Figure 13.  Inverse compensation experimental results

    图 14  HF辨识框图

    Figure 14.  Block diagram for HF identification

    表  1  模态频率、质量、刚度和阻尼比

    Table  1.   Modal frequency, mass, stiffness and damping ratio

    阶数 模态频率/Hz 质量 刚度/10 9 阻尼比
    1 178.581 42.145 0.053268 14.286
    2 381.735 21.838 0.13247 30.538
    3 1064.865 82.448 3.4952 85.189
    4 1375.991 22.980 1.7185 117.37
    5 1825.936 28.565 3.7862 152.16
    6 2279.569 74.963 1.5413 165.27
    7 2356.211 175.62 31.847 173.18
    8 2548.429 52.821 1.3543 188.73
    下载: 导出CSV

    表  2  MPI模型建模误差

    Table  2.   Modeling error of MPI model

    作动器 RMSE/μm
    1 0.0059
    2 0.0021
    3 0.0013
    4 0.0022
    5 0.0019
    6 0.0028
    7 0.0018
    8 0.0017
    下载: 导出CSV

    表  3  逆补偿实验结果

    Table  3.   Inverse compensation experimental results

    作动器 RMSE/μm
    1 0.0305
    2 0.0063
    3 0.0042
    4 0.0115
    5 0.0095
    6 0.026
    7 0.0148
    8 0.0102
    下载: 导出CSV
  • [1] PREMOUNT A.Vibration control of active structures:An introduction[M].Berlin:Springer Science & Business Media, 2002.
    [2] LIU C C, JING X J, DALEY S, et al.Recent advances in micro-vibration isolation[J].Mechanical Systems and Signal Processing, 2015, 56-57:55-80. doi: 10.1016/j.ymssp.2014.10.007
    [3] NAKAMURA Y, NAKAYAMA M, MASUDA K, et al.Development of active 6-DOF micro-vibration control system using giant magnetostrictive actuator[C]//Conference on Smart Systems for Bridges, Structures, and Highways at Smart Structures and Materials 1999.Bellingham: SPIE, 1999, 3671: 229-240. https://www.researchgate.net/publication/252151560_Development_of_6-DOF_microvibration_control_system_using_giant_magnetostrictive_actuator
    [4] THEIR M, SAATHOF R, SINN A, et al.Six degree of freedom vibration isolation platform for in-line nano-metrology[J].IFAC PapersOnLine, 2016, 49(21):149-156. doi: 10.1016/j.ifacol.2016.10.534
    [5] WANG C X, XIE X L, CHEN Y H, et al.Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators[J].Journal of Sound and Vibration, 2016, 383:1-19. doi: 10.1016/j.jsv.2016.07.021
    [6] YANG X L, WU H T, CHEN B, et al.Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation[J].Journal of Sound and Vibration, 2019, 439:398-412. doi: 10.1016/j.jsv.2018.10.007
    [7] 郝慧荣, 白鸿柏, 张慧杰.六自由度主被动一体隔振平台鲁棒控制[J].振动与冲击, 2012, 31(7):122-127. doi: 10.3969/j.issn.1000-3835.2012.07.026

    HAO H R, BAI H B, ZHANG H J.Robust control of a 6-DOF active-passive vibration isolation platform[J].Journal of Vibration and Shock, 2012, 31(7):122-127(in Chinese). doi: 10.3969/j.issn.1000-3835.2012.07.026
    [8] 傅志方, 华宏星.模态分析理论与应用[M].上海:上海交通大学出版社, 2000.

    FU Z F, HUA H X.Modal analysis theory and application[M].Shanghai:Shanghai Jiao Tong University Press, 2000(in Chinese).
    [9] MEIROVITCH L, BARUH H.Robustness of the independent modal space control method[J].Journal of Guidance, 1982, 6(1):20-25. doi: 10.2514-3.19797/
    [10] ZUO L, SOLTINE J J E.Robust vibration isolation via frequency-shaped sliding control and modal decomposition[J].Journal of Sound and Vibration, 2004, 285(4-5):1123-1149. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027830359/
    [11] HEERTJES M, DE GRAAFF K, VAN DER TOOM J.Active vibration isolation of metrology frames:A modal decoupled control design[J].Journal of Vibration and Acoustics, 2005, 127(3):223-233. doi: 10.1115/1.1897741
    [12] NAKAMURA Y, NAKAYAMAL M, MASUDAL K.Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators[J].Smart Materials and Structurse, 2000, 9(2):175-185. doi: 10.1088/0964-1726/9/2/308
    [13] 侯军芳, 李荣利, 白鸿柏.主动隔振平台模态区间参数模型的独立模态控制方法[J].振动工程学报, 2011, 24(6):670-675. doi: 10.3969/j.issn.1004-4523.2011.06.014

    HOU J F, LI R L, BAI H B.Independent modal control method for the modal interval parameter model of the active isolation platform[J].Journal of Vibration Engineering, 2011, 24(6):670-675(in Chinese). doi: 10.3969/j.issn.1004-4523.2011.06.014
    [14] ZHANG Z, DU C L, GAO T T, et al.Hysteresis modeling and compensation of PZT milliactuator in hard disk drivers[C]//2014 13th International Conference on Control Automation Robotics & Vision(ICARCV).Piscataway: IEEE Press, 2014: 980-984. https://www.researchgate.net/publication/282711097_Hysteresis_modeling_and_compensation_of_PZT_milliactuator_in_hard_disk_drives
    [15] 王贞艳, 张臻, 周克敏, 等.压电作动器的动态迟滞建模与鲁棒控制[J].控制理论与应用, 2014, 31(1):35-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201401005

    WANG Z Y, ZHANG Z, ZHOU K M, et al.Dynamic hysteresis modeling and robust control of piezoelectric actuators[J].Control Theory and Application, 2014, 31(1):35-41(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201401005
    [16] KUHNEN K.Modeling, identification and compensation of complex hysteretic nonlinearities:A modified Prandtl-Ishlinskii approach[J].European Journal of Control, 2003, 9(4):407-418. doi: 10.3166/ejc.9.407-418
    [17] YOSHIOKA H, MURAI N.An active microvibration isolation system[C]//Proceeding of the 7th International Workshop on Accelerator Alignment, 2002: 388-401. https://www.researchgate.net/publication/252134273_AN_ACTIVE_MICROVIBRATION_ISOLATION_SYSTEM
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  542
  • HTML全文浏览量:  94
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2019-10-12
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答