留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AIGWO-IMMUKF的目标跟踪算法

游航航 韩其松 余敏建 龙宏志 杨海燕 李朋永

游航航, 韩其松, 余敏建, 等 . 基于AIGWO-IMMUKF的目标跟踪算法[J]. 北京航空航天大学学报, 2020, 46(10): 1826-1833. doi: 10.13700/j.bh.1001-5965.2019.0405
引用本文: 游航航, 韩其松, 余敏建, 等 . 基于AIGWO-IMMUKF的目标跟踪算法[J]. 北京航空航天大学学报, 2020, 46(10): 1826-1833. doi: 10.13700/j.bh.1001-5965.2019.0405
YOU Hanghang, HAN Qisong, YU Minjian, et al. Target tracking algorithm based on AIGWO-IMMUKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1826-1833. doi: 10.13700/j.bh.1001-5965.2019.0405(in Chinese)
Citation: YOU Hanghang, HAN Qisong, YU Minjian, et al. Target tracking algorithm based on AIGWO-IMMUKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1826-1833. doi: 10.13700/j.bh.1001-5965.2019.0405(in Chinese)

基于AIGWO-IMMUKF的目标跟踪算法

doi: 10.13700/j.bh.1001-5965.2019.0405
基金项目: 

国家自然科学基金 61472441

装备预研领域基金 61403110304

空军工程大学校长基金 XZJY2018031

详细信息
    作者简介:

    游航航  男,硕士,助理工程师。主要研究方向:航空兵指挥

    韩其松  男,硕士,讲师。主要研究方向:航空兵指挥自动化

    余敏建  男,硕士,教授。主要研究方向:航空兵指挥自动化

    杨海燕  女,博士,副教授。主要研究方向:空天态势与威胁评估

    李朋永  男,本科,工程师。主要研究方向:空域管理

    通讯作者:

    韩其松. E-mail:afeu_yh@126.com

  • 中图分类号: TN953;V24

Target tracking algorithm based on AIGWO-IMMUKF

Funds: 

National Natural Science Foundation of China 61472441

Fund for Equipment Pre-research Field of China 61403110304

President's Fund of Air Force Engineering University XZJY2018031

More Information
  • 摘要:

    针对目标跟踪算法中滤波器选择和模型设计问题,提出了一种具有自适应性的交互式多模型无迹卡尔曼滤波(IMMUKF)目标跟踪算法。首先,介绍了IMMUKF的算法步骤;其次,提出运用改进的灰狼优化(IGWO)算法优化其中的滤波参数,通过构造调节因子建立了时变的Markov状态转移概率,形成了AIGWO-IMMUKF算法,并给出其算法流程;最后,将所提AIGWO-IMMUKF算法与传统算法在相同条件下进行仿真,得出位置、速度均方根误差曲线,以及时效性对比。结果表明,所提AIGWO-IMMUKF算法克服了传统IMMUKF算法的不足,提升了算法性能,精度和时效性都更优。

     

  • 图 1  灰狼位置更新示意图

    Figure 1.  Schematic diagram of gray wolf location update

    图 2  AIGWO-IMMUKF算法流程示意图

    Figure 2.  Flowchart of AIGWO-IMMUKF algorithm

    图 3  跟踪轨迹三维空间示意图

    Figure 3.  Sketch map of tracking trajectory in 3D space

    图 4  XY方向位置RSME随时间变化曲线

    Figure 4.  Change of X, Y-direction position RSME with time

    图 5  XY方向速度RSME随时间变化曲线

    Figure 5.  Change of X, Y-direction velocity RSME with time

    图 6  算法时效性对比

    Figure 6.  Comparison of algorithm timeliness

  • [1] 刘楠.基于机动目标跟踪模型的自适应滤波算法[D].杭州: 浙江理工大学, 2016.

    LIU N.Adaptive filter algorithm based on maneuvering target tracking model[D].Hangzhou: Zhejiang Sci-Tech University, 2016(in Chinese).
    [2] 江宝安, 万群.基于UKF-IMM的双红外机动目标跟踪算法[J].系统工程与电子技术, 2008, 30(8):1454-1459.

    JIANG B A, WAN Q.Maneuvering target passive tracking with dual infrared observers using IMM algorithm based on UKF[J].Systems Engineering and Electronics, 2008, 30(8):1454-1459(in Chinese).
    [3] 刘昌云.雷达机动目标运动模型与跟踪算法研究[D].西安: 西安电子科技大学, 2014.

    LIU C Y.Study on motion model and tracking algorithms of radar maneuvering target[D].Xi'an: Xidian University, 2014(in Chinese).
    [4] 万琴, 王耀南.基于卡尔曼滤波器的运动目标检测与跟踪[J].湖南大学学报(自然科学版), 2007, 34(3):36-40.

    WAN Q, WANG Y N.Moving objects detecting and tracking based on Kalman filter[J].Journal of Hunan University(Natural Sciences), 2007, 34(3):36-40(in Chinese).
    [5] 张勇刚, 黄玉龙, 武哲民, 等.一种高阶无迹卡尔曼滤波方法[J].自动化学报, 2014, 40(5):838-848.

    ZHANG Y G, HUANG Y L, WU Z M, et al.A high order unscented Kalman filtering method[J].Acta Automatica Sinica, 2014, 40(5):838-848(in Chinese).
    [6] 刘向阳.几种典型非线性滤波算法及性能分析[J].舰船电子工程, 2019, 39(7):32-36.

    LIU X Y.Several typical nonlinear filtering algorithms and performance analysis[J].Ship Electronic Engineering, 2019, 39(7):32-36(in Chinese).
    [7] 刘铮.UKF算法及其改进算法的研究[D].长沙: 中南大学, 2009.

    LIU Z.Research on UKF algorithm and its improved algorithm[D].Changsha: Central South University, 2009(in Chinese).
    [8] 张园.空中单机动目标跟踪算法的研究[D].大连: 大连海事大学, 2014.

    ZHANG Y.The research on tracking algorithms for single aerial maneuvering target[D].Dalian: Dalian Maritime University, 2014(in Chinese).
    [9] MALLESWARAN M, VAIDEHI V, IRWIN S, et al.IMM-UKF-TFS model-based approach for intelligent navigation[J].The Journal of Navigation, 2013, 66(6):19.
    [10] XU T L.Federated IMM-UKF algorithm for multi-sensor data fusion[J].Advanced Materials Research, 2013, 753-755:2117-2120. doi: 10.4028/www.scientific.net/AMR.753-755.2117
    [11] ZHANG Y, CHEN H S, LUO Y.A novel infrared landmark indoor positioning method based on improved IMM-UKF[J].Applied Mechanics and Materials, 2014, 511-512:880-885. doi: 10.4028/www.scientific.net/AMM.511-512.880
    [12] 徐晓苏, 闫琳宇, 吴晓飞, 等.基于粒子群优化的UKF在SINS/GPS组合导航中的应用[J].中国惯性技术学报, 2018, 26(2):196-201.

    XU X S, YAN L Y, WU X F, et al.Unscented Kalman filter based on particle swarm optimization algorithm in SINS/GPS integrated navigation system[J].Journal of Chinese Inertial Technology, 2018, 26(2):196-201(in Chinese).
    [13] 郭继峰, 李忠志, 张国强, 等.基于深度置信网络的卡尔曼滤波算法改进[J].计算机应用与软件, 2019, 36(6):248-253.

    GUO J F, LI Z Z, ZHANG G Q, et al.Improvement of Kalman filter algorithm based on deep belief network[J].Computer Applications and Software, 2019, 36(6):248-253(in Chinese).
    [14] 左东广, 韩崇昭, 郑林, 等.基于时变马尔科夫转移概率的机动目标多模型跟踪[J].西安交通大学学报, 2003, 37(8):824-828.

    ZUO D G, HAN C Z, ZHENG L, et al.Maneuvering target tracking based on time-varying Markov transition probabilities[J].Journal of Xi'an Jiaotong University, 2003, 37(8):824-828(in Chinese).
    [15] 郭志, 董春云, 蔡远利, 等.时变转移概率IMM-SRCKF机动目标跟踪算法[J].系统工程与电子技术, 2015, 37(1):24-30.

    GUO Z, DONG C Y, CAI Y L, et al.Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking[J].Systems Engineering and Electronics, 2015, 37(1):24-30(in Chinese).
    [16] 臧荣春, 崔平远.马尔可夫参数自适应IFIMM算法研究[J].电子学报, 2006, 34(3):521-524.

    ZANG R C, CUI P Y.Research on adaptive Markov parameter IFIMM algorithm[J].Acta Electronica Sinica, 2006, 34(3):521-524(in Chinese).
    [17] 潘泉, 杨峰, 叶亮, 等.一类非线性滤波器——UKF综述[J].控制与决策, 2005, 20(5):481-489.

    PAN Q, YANG F, YE L, et al.Survey of a kind of nonlinear filters-UKF[J].Control and Decision, 2005, 20(5):481-489(in Chinese).
    [18] MIRJALILI S, MIRJALILI S M, LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69:46-61. doi: 10.1016/j.advengsoft.2013.12.007
    [19] 姚鹏, 王宏伦.基于改进流体扰动算法与灰狼优化的无人机三维航路规划[J].控制与决策, 2016, 31(4):701-708.

    YAO P, WANG H L.Three-dimensional path planning for UAV based on improved interfered fluid dynamical system and grey wolf optimizer[J].Control and Decision, 2016, 31(4):701-708(in Chinese).
    [20] BIAN X Q, ZHANG L, DU Z M, et al.Prediction of sulfur solubility in supercritical sour gases using grey wolf optimizer-based support vector machine[J].Journal of Molecular Liquids, 2018, 261:431-438. doi: 10.1016/j.molliq.2018.04.070
    [21] LIU H, WU H, LI Y.Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction[J].Energy Conversion and Management, 2018, 161:266-283. doi: 10.1016/j.enconman.2018.02.006
    [22] 魏政磊, 赵辉, 黄汉桥, 等.基于SAGWO算法的UCAVs动态协同任务分配[J].北京航空航天大学学报, 2018, 44(8):1651-1664. doi: 10.13700/j.bh.1001-5965.2017.0589

    WEI Z L, ZHAO H, HUANG H Q, et al.Dynamic UCAVs cooperative task allocation based on SAGWO algorithm[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8):1651-1664(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0589
    [23] 张凤娇, 魏民祥, 赵万忠.基于蚁群优化UKF算法的汽车状态估计[J].中国机械工程, 2015, 26(22):3046-3050.

    ZHANG F J, WEI M X, ZHAO W Z.Vehicle state estimation based on ant colony optimization algorithm[J].China Mechanical Engineering, 2015, 26(22):3046-3050(in Chinese).
    [24] LI W, JIA Y.An information theoretic approach to interacting multiple model estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):1811-1825. doi: 10.1109/TAES.2015.140542
    [25] 封普文, 黄长强, 曹林平, 等.基于自适应马尔可夫参数交互多模型算法的弹道导弹跟踪研究[J].兵工学报, 2014, 35(12):2041-2049.

    FENG P W, HUANG C Q, CAO L P, et al.Research on ballistic missile tracking based on adaptive Markov parameter IMM[J].Acta Armamentarii, 2014, 35(12):2041-2049(in Chinese).
    [26] 刘娟丽.基于交互多模型的被动多传感器机动目标跟踪算法研究[D].西安: 西安电子科技大学, 2010.

    LIU J L.Research on maneuvering target tracking based on interacting multiple model for multiple passive sensors[D].Xi'an: Xidian University, 2010(in Chinese).
    [27] 张振兴, 杨任农, 张彬超, 等.空战飞行对敌目标逼近航迹跟踪仿真[J].空军工程大学学报(自然科学版), 2018, 19(2):33-37.

    ZHANG Z X, YANG R N, ZHANG B C, et al.Air combat trajectory predict simulation for enemy target approach[J].Journal of Air Force Engineering University(Natural Science Edition), 2018, 19(2):33-37(in Chinese).
  • 加载中
图(6)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  122
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2020-04-10
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答