留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于解耦优化和环流APF的多平台协同攻击任务规划

贾正荣 卢发兴 王航宇

贾正荣, 卢发兴, 王航宇等 . 基于解耦优化和环流APF的多平台协同攻击任务规划[J]. 北京航空航天大学学报, 2020, 46(6): 1142-1150. doi: 10.13700/j.bh.1001-5965.2019.0424
引用本文: 贾正荣, 卢发兴, 王航宇等 . 基于解耦优化和环流APF的多平台协同攻击任务规划[J]. 北京航空航天大学学报, 2020, 46(6): 1142-1150. doi: 10.13700/j.bh.1001-5965.2019.0424
JIA Zhengrong, LU Faxing, WANG Hangyuet al. Multi-platform cooperative task planning with decoupling optimization and circulating APF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1142-1150. doi: 10.13700/j.bh.1001-5965.2019.0424(in Chinese)
Citation: JIA Zhengrong, LU Faxing, WANG Hangyuet al. Multi-platform cooperative task planning with decoupling optimization and circulating APF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1142-1150. doi: 10.13700/j.bh.1001-5965.2019.0424(in Chinese)

基于解耦优化和环流APF的多平台协同攻击任务规划

doi: 10.13700/j.bh.1001-5965.2019.0424
详细信息
    作者简介:

    贾正荣   男, 博士, 讲师。主要研究方向:武器协同控制、航路规划、作战系统效能分析

    王航宇   男, 博士, 教授。主要研究方向:复杂系统建模、舰载武器火力控制、作战系统效能分析

    通讯作者:

    王航宇. E-mail:17720214650@163.com

  • 中图分类号: V19

Multi-platform cooperative task planning with decoupling optimization and circulating APF

More Information
  • 摘要:

    为提升协同攻击任务规划效率,借助人工势场(APF)方法求解速度快的优势,提出多平台协同攻击任务规划方法。针对任务规划问题中任务分配与航路规划的耦合问题,提出基于独立航路规划的解耦(ID)与基于直接距离的解耦(DD)2种解耦框架;建立考虑打击目标价值总和、攻击平台与目标距离极差、攻击平台与目标距离总和等因素的指标函数,采用遗传算法进行任务分配求解;提出环流APF方法,避免了传统APF方法因局部极小值而无解的问题,并提出同时到达控制策略与航路冲突规避策略,实现多平台同时到达航路规划。在不同场景下比较了耦合方式、ID、DD 3种任务规划框架的规划结果,并对比了传统APF方法与环流APF方法的航路规划结果。结果表明,解耦方式能够得到与耦合方式接近的结果,并且计算耗时明显低于耦合方式;环流APF方法相比传统APF方法求解可行性更高,航路性能更好。对于存在大块障碍的场景,推荐使用ID方式获得更好的准确度,在障碍稀疏的场景下,推荐使用DD方式以减少计算耗时。

     

  • 图 1  合势场为0的情况

    Figure 1.  Situation of resultant potential field being 0

    图 2  斥力势场相反的情况

    Figure 2.  Situation opposite to repulsive potential fields

    图 3  虚拟目标位置的选择

    Figure 3.  Position selection of virtual target position

    图 4  系数分配

    Figure 4.  Coefficient allocation

    图 5  ID解耦与耦合方式下环流APF方法和传统APF方法的航路规划结果(场景A)

    Figure 5.  Path planning results of circulating APF and traditional APF with ID decoupling method and coupling method (Scenario A)

    图 6  DD解耦方式下环流APF方法的航路规划结果(场景A)

    Figure 6.  Path planning results of circulating APF method with DD decoupling method (Scenario A)

    图 7  DD解耦方式下传统APF方法的航路规划结果(场景A)

    Figure 7.  Path planning results of traditional APF method with DD decoupling method (Scenario A)

    图 8  环流APF方法的航路规划结果(场景B)

    Figure 8.  Path planning results of circulating APF method (Scenario B)

    图 9  传统APF方法的航路规划结果(场景B)

    Figure 9.  Path planning results of traditional APF method (Scenario B)

    图 10  环流APF方法的航路规划细节(场景B)

    Figure 10.  Path planning result details of circulating APF method (Scenario B)

    图 11  传统APF方法的航路规划细节(场景B)

    Figure 11.  Path planning result details of traditional APF method (Scenario B)

    表  1  攻击平台对目标的毁伤概率(场景A)

    Table  1.   Kill probabilities of attack platforms to targets in Scenario A

    攻击平台 T-1 T-2
    P-1 0.41 0.65
    P-2 0.77 0.70
    P-3 0.51 0.64
    P-4 0.53 0.72
    下载: 导出CSV

    表  2  目标价值(场景A)

    Table  2.   Target value in Scenario A

    目标 目标价值
    T-1 3
    T-2 3
    下载: 导出CSV

    表  3  任务分配结果(场景A)

    Table  3.   Task assignment results in Scenario A

    规划方式 P-1 P-2 P-3 P-4
    耦合 T-1 T-1 T-2 T-2
    ID T-1 T-1 T-2 T-2
    DD T-2 T-1 T-2 T-1
    下载: 导出CSV

    表  4  攻击平台对目标的毁伤概率(场景B)

    Table  4.   Kill probabilities of attack platforms to targets in Scenario B

    攻击
    平台
    T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9
    P-1 0.58 0.65 0.72 0.67 0.63 0.46 0.52 0.79 0.50
    P-2 0.52 0.74 0.48 0.48 0.66 0.72 0.47 0.44 0.77
    P-3 0.64 0.60 0.58 0.56 0.64 0.56 0.64 0.69 0.75
    P-4 0.48 0.78 0.47 0.40 0.68 0.76 0.69 0.69 0.72
    P-5 0.52 0.56 0.46 0.63 0.52 0.51 0.70 0.71 0.42
    P-6 0.45 0.65 0.41 0.66 0.41 0.57 0.48 0.69 0.60
    P-7 0.78 0.43 0.42 0.74 0.40 0.63 0.64 0.59 0.49
    下载: 导出CSV

    表  5  目标价值(场景B)

    Table  5.   Target value in Scenario B

    目标 目标价值
    T-1 0.77
    T-2 2.20
    T-3 0.76
    T-4 0.62
    T-5 1.70
    T-6 0.65
    T-7 0.75
    T-8 3.30
    T-9 0.50
    下载: 导出CSV

    表  6  任务分配结果(场景B)

    Table  6.   Task planning results in Scenario B

    规划方式 P-1 P-2 P-3 P-4 P-5 P-6 P-7
    耦合 T-8 T-5 T-8 T-2 T-7 T-4 T-1
    ID T-8 T-5 T-8 T-2 T-7 T-4 T-1
    DD T-8 T-5 T-8 T-2 T-7 T-4 T-1
    下载: 导出CSV

    表  7  不同规划方式下的指标与计算耗时对比

    Table  7.   Index and time consumption comparison of different planning methods

    场景 规划方式 优化
    总指标
    任务分配
    耗时/ms
    航路规划
    单步耗时/ms
    耦合 2.45 508.09 0.82
    A ID 2.45 0.79 0.88
    DD 2.30 0.27 0.79
    耦合 3.07 7498.93 3.57
    B ID 3.07 12.50 3.56
    DD 3.07 1.10 3.58
    下载: 导出CSV
  • [1] BEARD R W, MCLAIN T W, GOODRICH M A, et al.Coordinated target assignment and intercept for unmanned air vehicles[J].IEEE Transactions on Robotics and Automation, 2003, 18(6):911-922. http://faculty.cs.byu.edu/~mike/mikeg/papers/BeardMcLainGoodrichAnderson2002.pdf
    [2] 杨萍, 刘颖, 裴莹.改进合同网协议的Agent动态任务分配[J].火力与指挥控制, 2011, 36(10):77-80. doi: 10.3969/j.issn.1002-0640.2011.10.021

    YANG P, LIU Y, PEI Y.Agent dynamic task allocation based on improved contract net protocol[J].Fire Control & Command Control, 2011, 36(10):77-80(in Chinese). doi: 10.3969/j.issn.1002-0640.2011.10.021
    [3] 唐苏妍, 梅珊, 朱一凡, 等.基于扩展合同网协议的分布式武器目标分配方法[J].系统工程与电子技术, 2011, 33(3):568-574. doi: 10.3969/j.issn.1001-506X.2011.03.20

    TANG S Y, MEI S, ZHU Y F, et al.Distributed weapon target assignment algorithm based on extended contract net protocol[J].Systems Engineering and Electronics, 2011, 33(3):568-574(in Chinese). doi: 10.3969/j.issn.1001-506X.2011.03.20
    [4] 张昉.无人机任务规划技术研究[D].南京: 南京航空航天大学, 2009.

    ZHANG F.Research on mission planning technology for unmanned air vehicles[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009(in Chinese).
    [5] 孙小雷, 齐乃明, 姚蔚然, 等.无人机任务分配与航迹规划协同控制方法[J].系统工程与电子技术, 2015, 37(12): 2772-2776. doi: 10.3969/j.issn.1001-506X.2015.12.17

    SUN X L, QI N M, YAO W R, et al.Cooperative control algorithm of task assignment and path planning for multiple UAVs[J].Systems Engineering and Electronics, 2015, 37(12):2772-2776(in Chinese). doi: 10.3969/j.issn.1001-506X.2015.12.17
    [6] ZENG J, DOU L, XIN B.Multi-objective cooperative salvo attack against group target[J].Journal of Systems Science and Complexity, 2018, 31(1):244-261. http://d.old.wanfangdata.com.cn/Periodical/xtkxysx201801017
    [7] LUITPOLD B.Coordinated target assignment and UAV path planning with timing constraints[J].Journal of Intelligent and Robotic Systems, 2018, 94:857-869. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea4821750423d3d563a78d40d7c34a61
    [8] 赵明.多无人机系统的协同目标分配和航迹规划方法研究[D].哈尔滨: 哈尔滨工业大学, 2016.

    ZHAO M.Research on cooperative target assignment and path planning for Multi-unmanned aircraft system[D].Harbin: Harbin Institute of Technology, 2016(in Chinese).
    [9] FOSSEN T I, PETTERSEN K Y, GALEAZZI R.Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J].IEEE Transactions on Control Systems Technology, 2015, 23(2):820-827. doi: 10.1109/TCST.2014.2338354
    [10] YAZICI A, KIRLIK G, PARLAKTUNA O, et al.A dynamic path planning approach for multi-robot sensor-based coverage considering energy constraints[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway: IEEE Press, 2009: 5930-5935. https://www.researchgate.net/publication/224090525_A_dynamic_path_planning_approach_for_multi-robot_sensor-based_coverage_considering_energy_constraints
    [11] LIU Y, ZHAO Y.A virtual-waypoint based artificial potential field method for UAV path planning[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC).Piscataway: IEEE Press, 2016: 16619076. https://www.researchgate.net/publication/313121057_A_virtual-waypoint_based_artificial_potential_field_method_for_UAV_path_planning
    [12] MANSOOR D, FATEMEH P, ALI M, et al.Clear and smooth path planning[J].Applied Soft Computing, 2015, 32:568-579. doi: 10.1016/j.asoc.2015.04.017
    [13] NIEWOLA A, PODSEDKOWSKI L.L* algorithm—A linear computational complexity graph searching algorithm for path planning[J].Journal of Intelligent and Robotic Systems, 2018, 91:425-444. doi: 10.1007/s10846-017-0748-6
    [14] DONATELLI M, GIANNELLI C, MUGNAINI D, et al.Curvature continuous path planning and path finding based on PH splines with tension[J].Computer-Aided Design, 2017, 88:14-30. doi: 10.1016/j.cad.2017.03.005
    [15] SASKA M, SPURNY V, VONASEK V, et al.Predictive control and stabilization of nonholonomic formations with integrated spline-path planning[J].Robotics and Autonomous Systems, 2016, 75:379-397. doi: 10.1016/j.robot.2015.09.004
    [16] LI N, HUAI W, WANG S.The solution of target assignment problem in command and control decision-making behaviour simulation[J].Enterprise Information Systems, 2016, 11(31):1-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/17517575.2016.1177207
    [17] BAI F, CHANG T Q, LI Y.An improved niche-based adaptive genetic algorithm for WTA problem solving[C]// International Conference on Computational Problem-solving.Piscataway: IEEE Press, 2010: 11763286. https://www.researchgate.net/publication/251986938_An_improved_niche-based_adaptive_genetic_algorithm_for_WTA_problem_solving
    [18] BAYRAK A E, POLAT F.Employment of an evolutionary heuristic to solve the target allocation problem efficiently[J].Information Sciences, 2013, 222:675-695. doi: 10.1016/j.ins.2012.07.050
    [19] ŞAHIN M A, LEBLEBICIOĞLU K.Approximating the optimal mapping for weapon target assignment by fuzzy reasoning[J].Information Sciences, 2014, 255:30-44. doi: 10.1016/j.ins.2013.08.004
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  45
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-01
  • 录用日期:  2019-09-29
  • 网络出版日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答