留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水上飞机水面降落全过程力学特性数值研究

赵芸可 屈秋林 刘沛清

赵芸可, 屈秋林, 刘沛清等 . 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830-838. doi: 10.13700/j.bh.1001-5965.2019.0462
引用本文: 赵芸可, 屈秋林, 刘沛清等 . 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830-838. doi: 10.13700/j.bh.1001-5965.2019.0462
ZHAO Yunke, QU Qiulin, LIU Peiqinget al. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838. doi: 10.13700/j.bh.1001-5965.2019.0462(in Chinese)
Citation: ZHAO Yunke, QU Qiulin, LIU Peiqinget al. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838. doi: 10.13700/j.bh.1001-5965.2019.0462(in Chinese)

水上飞机水面降落全过程力学特性数值研究

doi: 10.13700/j.bh.1001-5965.2019.0462
详细信息
    作者简介:

    赵芸可 女, 博士研究生。主要研究方向:流体力学

    屈秋林 男, 博士, 副教授, 硕士生导师。主要研究方向:流体力学、空气动力学

    刘沛清  男, 博士, 教授, 博士生导师。主要研究方向:流动分离与控制、大迎角空气动力学、飞行器气动布局等

    通讯作者:

    刘沛清, E-mail: lpq@buaa.edu.cn

  • 中图分类号: V11;V19

Numerical study on mechanical properties of seaplane in whole water surface landing process

More Information
  • 摘要:

    数值方法模拟水上飞机的水面降落运动姿态和受力的全过程,是结合了水汽两相流、运动学和动力学的复杂问题。采用基于Fluent商用软件开发的整体运动网格方法结合VOF方法进行自由面捕捉,采用六自由度模型进行运动状态模拟,对某型水上飞机水面降落的全过程进行了数值模拟,得到了较好的模拟结果,验证了整体运动网格方法在处理水上飞机水面降落问题时具备良好的适应性。通过模拟得到过载曲线、运动状态参数和水面状况,将降落过程划分为冲击、滑水、漂浮3个阶段,并通过对各阶段的分析总结出对水面降落过程的一般性认识,以期为水上飞机的设计研发提供方法和参考。

     

  • 图 1  实验NACA-TN-2929中的模型F机身模型[22]

    Figure 1.  Fuselage model of Model F in NACA-TN-2929 experiment[22]

    图 2  模型F的表面网格[17]

    Figure 2.  Surface grid of Model F[17]

    图 3  模型F的计算结果与实验结果的对比[17]

    Figure 3.  Comparison of calculation results of Model F with experimental results[17]

    图 4  某型水上飞机几何特征和计算网格

    Figure 4.  Geometric features and computational grid of a certain seaplane

    图 5  降落过程运动状态曲线

    Figure 5.  Landing process motion state curves

    图 6  冲击阶段运动状态和过载变化历程曲线

    Figure 6.  Motion state and overload history curves during impact stage

    图 7  冲击阶段0.55 s水面状况和机身底部压力云图

    Figure 7.  Water surface condition and pressure contour of the bottom of fuselage at 0.55 s during impact stage

    图 8  冲击阶段0.6~2.0 s机身底部压力云图

    Figure 8.  Pressure contour of the bottom of fuselage for 0.6-2.0 s during impact stage

    图 9  滑水阶段运动状态和过载变化历程曲线

    Figure 9.  Motion state and overload history curves during water skiing stage

    图 10  滑水阶段水面状况和机身底部压力云图(机身后段未入水)

    Figure 10.  Water surface condition and pressure contour of the bottom of fuselage during water skiing stage (tail does not touch water)

    图 11  滑水阶段水面状况和机身底部压力云图(机身后段入水)

    Figure 11.  Water surface condition and pressure contour of the bottom of fuselage during water skiing stage (tail touches water)

    图 12  漂浮阶段运动状态和过载变化历程曲线

    Figure 12.  Motion state and overload history curves during floating stage

    图 13  漂浮阶段水面状况和机身底部压力云图

    Figure 13.  Water surface condition and pressure contour of the bottom of fuselage during floating stage

  • [1] 褚林塘.水上飞机水动力设计[M].北京:航空工业出版社, 2014:2-3.

    CHU L T.Seaplane hydrodynamic design[M].Beijing:Aviation Industry Press, 2014:2-3(in Chinese).
    [2] VON KARMAN T.The impact on seaplane floats during landing: NACA-TN-321[R].[S.l.]: NACA, 1929.
    [3] WAGNER H.Vber Stoß-und Gleitvorgänge an der Oberfläche von Flüssigkeiten[J].ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4):193-215. doi: 10.1002/zamm.19320120402
    [4] WANG J, LUGNI C, FALTINSEN O M.Experimental and numerical investigation of a freefall wedge vertically entering the water surface[J].Applied Ocean Research, 2015, 51:181-203. doi: 10.1016/j.apor.2015.04.003
    [5] MAYO W L.Analysis and modification of theory for impact of seaplanes on water: NACA-TR-810[R].[S.l.]: NACA, 1945.
    [6] MILWITZKY B.A generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by V-bottom seaplanes during step-landing impacts: NACA-TN-1516[R].[S.l.]: NACA, 1948.
    [7] MILLER R W.Theoretical analysis of hydrodynamic impact of a prismatic float having freedom in trim: NACA-TN-2698[R].[S.l.]: NACA, 1952.
    [8] PARKINSON J B, OLSON R E, HOUSE R O.Hydrodynamic and aerodynamic tests of a family of models of seaplane floats with varying angles of dead rise: NACA-TN-716[R].[S.l.]: NACA, 1939.
    [9] PARKINSON J B, OLSON R E, DRELEY E C, et al.Aerodynamic and hydrodynamic tests of a family of models of flying-boat hulls derived from a streamline body: NACA-TR-766[R].[S.l.]: NACA, 1943.
    [10] 王明振.水上飞机水载荷试验方法探讨[M]//褚林塘, 叶树林.水上飞机文集.北京: 航空工业出版社, 2011: 376-382.

    WANG M Z.Discussion on test method of waterborne water load[M]//CHU L T, YE S L.Seaplane collection.Beijing: Aviation Industry Press, 2011: 376-382(in Chinese).
    [11] 魏飞, 许靖锋.飞机模型水上迫降试验测控系统设计[M]//褚林塘, 叶树林.水上飞机文集.北京: 航空工业出版社, 2011: 383-391.

    WEI F, XU J F.Aircraft model water landing test and control system design[M]//CHU L T, YE S L.Seaplane collection.Beijing: Aviation Industry Press, 2011: 383-391(in Chinese).
    [12] PENTECOTE N, KOHLGRUBER D.Crash on water: A highly multi-physics problem[C]//14th European Conference and Exhibition on Digital Simulation for Virtual Engineering, 2004: 1-10.
    [13] 杜小弢, 吴卫, 龚凯, 等.二维滑坡涌浪的SPH方法数值模拟[J].水动力学研究与进展, 2006, 21(5):579-586. http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200605004

    DU X T, WU W, GONG K, et al.Numerical simulation of SPH method for two-dimensional landslide surge[J].Hydrodynamic Research and Development, 2006, 21(5):579-586(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sdlxyjyjz200605004
    [14] STRECKWALL H, LINDENAU O, BENSCH L.Aircraft ditching:A free surface/free motion problem[J].Archives of Civil & Mechanical Engineering, 2007, 7(3):177-190.
    [15] 屈秋林, 刘沛清, 郭保东, 等.某型客机水上迫降的着水冲击力学性能数值研究[J].民用飞机设计与研究, 2009(s1):64-69.

    QU Q L, LIU P Q, GUO B D, et al.Numerical study on the impact mechanical performance of a passenger aircraft on the water landing[J].Civil Aircraft Design and Research, 2009(s1):64-69(in Chinese).
    [16] QIU L J, SONG W B.Efficient decoupled hydrodynamic and aerodynamic analysis of amphibious aircraft water takeoff process[J].Joural of Aircraft, 2013, 50(5):1369-1379. doi: 10.2514/1.C031846
    [17] QU Q L, HU M X, GUO H, et al.Study of ditching characteristics of transport aircraft by global moving mesh method[J].Journal of Aircraft, 2015, 52(5):1550-1558. doi: 10.2514/1.C032993
    [18] 张浪, 程用胜, 王福新.上飞机静水起飞过程水气耦合性能分析[J].科学技术与工程, 2018, 18(11):190-195. http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201811029

    ZHANG L, CHENG Y S, WANG F X.Coupled hydrodynamic and aerodynamic performance analysis of seaplane take-off process in calm water[J].Science Technology and Engineering, 2018, 18(11):190-195(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kxjsygc201811029
    [19] 段旭鹏, 孙卫平, 魏猛, 等.基于OpenFOAM的水上飞机水面高速滑行研究[J].航空学报, 2019, 40(1):522330.

    DUAN X P, SUN W P, WEI M, et al.Numerical simulation of amphibious aircraft at high speed during taxiing on water using OpenFOAM[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522330(in Chinese).
    [20] HIRT C W, NICHOLS B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J].Journal of Computational Physics, 1981, 39(1):201-225. doi: 10.1016/0021-9991(81)90145-5
    [21] MUZAFERIJA S, PERIC M, SAMES P, et al.A two-fluid Navier-Stokes solver to simulate waterentry[C]//Proceedings of the 22nd Symposium on Naval Hydrodynamics, 1998: 277-289.
    [22] MCBRIDE E E, FISHER L J.Experimental investigation of the effect of rear-fuselage shape on ditching behavior: NACA-TN-2929[R].[S.l.]: NACA, 1953.
  • 加载中
图(13)
计量
  • 文章访问数:  926
  • HTML全文浏览量:  245
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-28
  • 录用日期:  2019-11-10
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答