留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非线性干扰观测器的航天器相对姿轨耦合控制

刘增波 乔建忠 郭雷 刘宗玉 范松涛

刘增波, 乔建忠, 郭雷, 等 . 基于非线性干扰观测器的航天器相对姿轨耦合控制[J]. 北京航空航天大学学报, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546
引用本文: 刘增波, 乔建忠, 郭雷, 等 . 基于非线性干扰观测器的航天器相对姿轨耦合控制[J]. 北京航空航天大学学报, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546
LIU Zengbo, QIAO Jianzhong, GUO Lei, et al. Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546(in Chinese)
Citation: LIU Zengbo, QIAO Jianzhong, GUO Lei, et al. Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1907-1915. doi: 10.13700/j.bh.1001-5965.2019.0546(in Chinese)

基于非线性干扰观测器的航天器相对姿轨耦合控制

doi: 10.13700/j.bh.1001-5965.2019.0546
详细信息
    作者简介:

    刘增波  男, 博士研究生, 高级工程师。主要研究方向:航天器导航制导与控制

    通讯作者:

    刘增波, E-mail: liuzengbo@buaa.edu.cn

  • 中图分类号: V448.2;O231.2

Nonlinear disturbance observer based control for relative position and attitude coupled spacecraft

More Information
  • 摘要:

    针对带挠性附件的服务航天器在近距离逼近失控目标航天器时的控制问题,考虑由于推进安装偏差导致的姿轨耦合,通过选用相对位置和相对姿态四元数作为状态向量,建立了服务航天器与失控目标航天器的相对位置和姿态动力学方程。考虑服务航天器的挠性附件影响,挠性振动可以视为位置和姿态控制系统微分有界的干扰。基于反馈线性化方法提出了非线性反馈控制律,设计了非线性干扰观测器,用于补偿可建模干扰,并基于所提非线性反馈控制律和非线性干扰观测器设计了复合控制器,其中非线性干扰观测器用于补偿挠性附件产生的干扰。数字仿真及半物理实物闭环验证表明,利用所设计的复合控制器能够有效补偿干扰,同时在对失控目标航天器跟踪时具有很好的鲁棒性。

     

  • 图 1  控制系统结构

    Figure 1.  Structure of control system

    图 2  位置干扰估计误差曲线

    Figure 2.  Curves of position disturbance estimation error

    图 3  三轴位置跟踪误差曲线

    Figure 3.  Curves of tri-axial position tracking error

    图 4  三轴位置跟踪误差曲线局部放大图

    Figure 4.  Curves of tri-axial position tracking error (zoom in)

    图 5  姿态干扰估计误差曲线

    Figure 5.  Curves of attitude disturbance estimation error

    图 6  相对四元数曲线

    Figure 6.  Curves of relative quaternion

    图 7  相对四元数曲线局部放大图

    Figure 7.  Curves of relative quaternion (zoom in)

    图 8  实物仿真验证系统结构

    Figure 8.  Structure of physical simulation and validation system

    图 9  三轴位置控制曲线

    Figure 9.  Curves of tri-axial position control

    图 10  相对四元数控制曲线

    Figure 10.  Curves of relative quaternion control

    图 11  位置干扰力及估计曲线

    Figure 11.  Curves of position disturbance force and estimation

    图 12  姿态干扰力矩及估计曲线

    Figure 12.  Curves of attitude disturbance torque and estimation

    表  1  仿真输入条件

    Table  1.   Input conditions of simulation

    序号 参数 数值
    1 r0/m [5, 10, 100]T
    2 [0, 0, -0.1]T
    3 rd/m [0, 0, 20]T
    4 qv0/(°) [0.130, -0.086, -0.011]T
    5 qvd/(°) [0, 0, 0]T
    6 Js/(kg·m2) [2 249.4, -44.4, -8.9;-44.4, 11 487.4, 1.6;-8.9, 1.6, 11 201.3]
    7 Jt/(kg·m2) [150, 0, 0;0, 180, 0;0, 0, 210]
    8 m/kg 1 278.3
    9 ωT/((°)·s-1) 0.067
    10 RT/m 6.772 517 893 194 875×106
    11 p/m 6.772 560 943 093 867×106
    下载: 导出CSV

    表  2  试验输入条件

    Table  2.   Input conditions of experiment

    序号 参数 数值
    1 r0/m [125, 1, -2]T
    2 [0, 0, -0.1]T
    3 rd/m [120, 0, 0]T
    4 qv0/(°) [0.008 877, -0.008 572, 0.017 527]T
    5 qvd/(°) [0, 0, 0]T
    6 Js/(kg·m2) [2 249.4, -44.4, -8.9;-44.4, 11 487.4, 1.6;-8.9, 1.6, 11 201.3]
    7 Jt/(kg·m2) [150, 0, 0;0, 180, 0;0, 0, 210]
    8 m/kg 1 278.3
    9 ωT/((°)·s-1) 0.067
    10 RT/m 6.772 517 893 194 875×106
    11 p/m 6.772 560 943 093 867×106
    下载: 导出CSV
  • [1] 徐李佳, 胡勇.非合作机动目标交会的相对位置控制术[J].空间控制技术与应用, 2015, 41(6):13-18. http://www.cnki.com.cn/Article/CJFDTotal-KJKZ201506004.htm

    XU L J, HU Y.Control for relative position of spacecraft rendezvous with a non-cooperative maneuver target[J].Aerospace Control and Application, 2015, 41(6):13-18(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KJKZ201506004.htm
    [2] 胡勇, 徐李佳, 解永春.针对失控翻滚目标航天器的交会对接控制[J].宇航学报, 2015, 36(1):47-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201501007

    HU Y, XU L J, XIE Y C.Characteristic model based control in rendezvous and docking with a tumbling target.spacecraft[J].Journal of Astronautics, 2015, 36(1):47-57(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201501007
    [3] 卢伟, 耿云海, 陈雪芹, 等.在轨服务航天器对目标的相对位置和姿态耦合控制[J].航空学报, 2011, 32(5):857-865. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201105010

    LU W, GENG Y H, CHEN X Q, et al.Coupled control of relative position of relative position and attitude for on-orbit servicing spacecraft with respect to target[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(5):857-865(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201105010
    [4] XIN M, PAN H J.Nonlinear optimal control of spacecraft approaching a tumbling target[J].Aerospace Science and Technology, 2011, 15(2):79-89. doi: 10.1016/j.ast.2010.05.009
    [5] 姜博严, 胡庆雷, 石忠, 等.与自由翻滚目标近距离段交会对接的相对姿轨耦合控制[J].宇航学报, 2014, 35(1):54-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201401007

    JIANG B Y, HU Q L, SHI Z, et al.Relative position and attitude coupled controller design for approaching and docking with a freely tumbling target[J].Journal of Astronautics, 2014, 35(1):54-60(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yhxb201401007
    [6] LU W, GENG Y H, CHEN X Q, et al.Relative position and attitude coupled control for autonomous docking with a tumbling target[J].International Journal of Control and Automation, 2011, 4(4):1-22.
    [7] 韩飞, 吴限德, 段广仁, 等.逼近与跟踪翻滚目标的双滑模面姿轨耦合控制[J].哈尔滨工程大学学报, 2018, 39(1):23-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201801004

    HAN F, WU X D, DUAN G R, et al.Attitude and orbit coupled dual slidingmode surface control for approaching and tracking tumbling target[J].Journal of Harbin Engineering University, 2018, 39(1):23-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201801004
    [8] 郭永, 宋申民, 李学辉.非合作交会对接的姿态和轨道耦合控制[J].控制理论与应用, 2016, 33(5):638-644. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201605010

    GUO Y, SONG S M, LI X H.Attitude and orbit coupled control for non-cooperative rendezvous and docking[J].Control Theory & Applications, 2016, 33(5):638-644(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kzllyyy201605010
    [9] LV Y Y, HU Q L, MA G F, et al.6-DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties[J].ISA Transactions, 2011, 50(4):573-580. doi: 10.1016/j.isatra.2011.04.001
    [10] KRISTIANSEN R, NICKLASSON P J, GRAVDAHL J T.Spacecraft coordination control in 6-DOF:Integrator back-stepping vs passivity based control[J].Automatica, 2008, 44(11):2896-2904. doi: 10.1016/j.automatica.2008.04.019
    [11] SARIYILDIZ E, OHNISHI K.A guide to design disturbance observer[J].Journal of Dynamic Systems, Measurement, and Control, 2014, 136(2):021011. doi: 10.1115/1.4025801
    [12] CHEN W H, BALANCE D J, GAWTHROP P J, et al.A nonlinear disturbance observer for robotic manipulators[J].IEEE Transactions on Industrial Electronics, 2000, 47(4):932-938. doi: 10.1109/41.857974
    [13] GUO L, CHEN W.Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach[J].International Journal of Robust and Nonlinear Control, 2005, 15(3):109-125. doi: 10.1002/rnc.978
    [14] GUO L, CAO S.Anti-disturbance control for systems with multiple disturbances[M].Boca Raton:CRC Press, 2013.
    [15] CHEN W H, YANG J, GUO L, et al.Disturbance observer-based control and related methods:An overview[J].IEEE Transactions on Industrial Electronics, 2016, 63(2):1083-1095. doi: 10.1109/TIE.2015.2478397
    [16] LIU H, GUO L, ZHANG Y M.An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts[J].Nonlinear Dynamics, 2012, 67(3):2081-2088. doi: 10.1007/s11071-011-0130-3
    [17] ZHU Y K, QIAO J Z, GUO L, et al.Adaptive sliding mode disturbance observer-based composite control with prescribed performance of space manipulators for target capturing[J].IEEE Transactions on Industrial Electronics, 2019, 66(3):1973-1983. doi: 10.1109/TIE.2018.2838065
    [18] CHEN K Y.Robust optimal adaptive sliding mode control with the disturbance observer for a manipulator robot system[J].International Journal of Control, Automation, and Systems, 2018, 16(4):1701-1715. doi: 10.1007/s12555-017-0710-1
    [19] 耿长福.航天器动力学[M].北京:中国科学技术出版社, 2008.

    GEN C F.Spacecraft dynamics[M].Beijing:China Science & Technology Press, 2008(in Chinese).
    [20] 朱仁章.航天器交会对接技术[M].北京:国防工业出版社, 2007.

    ZHU R Z.Rendezvous and docking techniques of spacecraft[M].Beijing:National Defense Industry Press, 2007(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  649
  • HTML全文浏览量:  104
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-16
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答