留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波风洞7°尖锥边界层转捩实验研究

栗继伟 卢盼 汪球 赵伟

栗继伟, 卢盼, 汪球, 等 . 激波风洞7°尖锥边界层转捩实验研究[J]. 北京航空航天大学学报, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577
引用本文: 栗继伟, 卢盼, 汪球, 等 . 激波风洞7°尖锥边界层转捩实验研究[J]. 北京航空航天大学学报, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577
LI Jiwei, LU Pan, WANG Qiu, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577(in Chinese)
Citation: LI Jiwei, LU Pan, WANG Qiu, et al. Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2087-2093. doi: 10.13700/j.bh.1001-5965.2019.0577(in Chinese)

激波风洞7°尖锥边界层转捩实验研究

doi: 10.13700/j.bh.1001-5965.2019.0577
基金项目: 

国家自然科学基金 11402275

国家自然科学基金 11727901

国家重点研发计划 2016YFA0401201

详细信息
    作者简介:

    栗继伟  男, 硕士, 工程师。主要研究方向:高超声速边界层转捩、风洞测试技术

    汪球  男, 博士, 副研究员。主要研究方向:高焓流动气动热

    通讯作者:

    汪球, E-mail: wangqiu@imech.ac.cn

  • 中图分类号: V411.7

Experimental study of boundary-layer transition on a 7° sharp cone in shock tunnel

Funds: 

National Natural Science Foundation of China 11402275

National Natural Science Foundation of China 11727901

National Key R & D Program of China 2016YFA0401201

More Information
  • 摘要:

    高超声速边界层转捩对摩阻、传热等有重要影响,飞行器的研制迫切希望能精确预测和控制边界层转捩。在JF8A激波风洞中开展了7°半锥角的高超声速尖锥边界层转捩实验研究,利用响应频率达到1 MHz量级的高频压力传感器对尖锥壁面脉动压力进行了测量,并结合热流测量结果,研究了高超声速尖锥边界层中扰动波的发展过程。实验结果表明:JF8A激波风洞在雷诺数为6.4×106/m状态下核心流的自由流噪声为2.8%;高频脉动压力测量技术能清晰地捕捉转捩过程中的第二模态波及其发展历程,试验状态下模型的第二模态波频率范围为165~206 kHz。当前研究结果能够为高超声速数值方法验证提供数据支撑。

     

  • 图 1  JF8A高超声速激波风洞

    Figure 1.  JF8A hypersonic shock tunnel

    图 2  试验典型压力曲线

    Figure 2.  Typical pressure histories in test

    图 3  尖锥模型及传感器安装示意图

    Figure 3.  Schematic diagram of sensor installation on sharp cone model

    图 4  原始及滤波后的PCB压力传感器信号

    Figure 4.  Raw and filtered PCB pressure sensor signals

    图 5  尖锥母线热流分布

    Figure 5.  Heat-flux distribution on sharp cone generatrix

    图 6  不同位置PCB脉动压力信号

    Figure 6.  Pressure fluctuation signals of PCB at different positions

    图 7  典型脉动压力功率谱及背景噪声

    Figure 7.  Typical fluctuation pressure PSD and background noise

    图 8  模型子午线的功率谱结果

    Figure 8.  PSD along model meridian

    图 9  高、低频脉动压力

    Figure 9.  High- and low-frequency fluctuation pressure

    表  1  风洞试验状态

    Table  1.   Test conditions of wind tunnel

    状态参数 数值
    驻室参数 P0/MPa 1.2
    H0 /(MJ·kg-1) 0.62
    T0/K 620
    自由流参数 ρ/(kg·m-3) 2.7×10-2
    u/(m·s-1) 1 054
    T/K 67.5
    Ma 6.5
    Re/m-1 6.4×106
    下载: 导出CSV
  • [1] CASPER K M, BERESH S J, SCHNEIDER S P. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer[J].Journal of Fluid Mechanics, 2014, 756:1058-1091. doi: 10.1017/jfm.2014.475
    [2] 陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201703001.htm

    CHEN J Q, TU G H, ZHANG Y F, et al.Hypersonic boundary layer transition:What we know, where shall we go[J].Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KQDX201703001.htm
    [3] 解少飞, 杨武兵, 沈清.高超声速边界层转捩及应用的若干进展回顾[J].航空学报, 2015, 36(3):714-723. http://d.wanfangdata.com.cn/Periodical/hkxb201503002

    XIE S F, YANG W B, SHEN Q.Review of progresses in hypersonic boundary layer transition mechanism and its applications[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(3):714-723(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201503002
    [4] 宋博, 李椿萱.高超声速尖锥边界层转捩数值模拟[J].北京航空航天大学学报, 2012, 38(7):877-881. https://bhxb.buaa.edu.cn/CN/abstract/abstract12329.shtml

    SONG B, LI C X.Hypersonic boundary layer transition prediction based on laminar fluctuation energy transport equation[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7):877-881(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12329.shtml
    [5] MACK L M.Boundary-layer linear stability theory: AGARD Report No.709[R].[S.l.]: AGARD, 1984.
    [6] 江贤洋, 李存标.高超声速边界层感受性研究综述[J].实验流体力学, 2017, 31(2):1-11. http://www.cqvip.com/QK/90272X/201702/672100537.html

    JIANG X Y, LI C B.Review of research on the receptivity of hypersonic boundary layer[J].Journal of Experiments in Fluid Mechanics, 2017, 31(2):1-11(in Chinese). http://www.cqvip.com/QK/90272X/201702/672100537.html
    [7] SCHNEIDER S P.Flight data for boundary-layer transition at hypersonic and supersonic speeds[J].Journal of Spacecraft and Rockets, 2011, 36(1):8-20. doi: 10.2514/2.3428
    [8] LI X L, FU D X, MA Y W.Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J].Physics of Fluids, 2010, 22:025105. doi: 10.1063/1.3313933
    [9] ZHONG X L.High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition[J].Journal of Computational Physics, 1998, 144(2):662-709. doi: 10.1006/jcph.1998.6010
    [10] FEDOROV A.Transition and stability of high-speed boundary layers[J].Annual Review of Fluid Mechanics, 2011, 43:79-95. doi: 10.1146/annurev-fluid-122109-160750
    [11] ZHANG C H, TANG Q, LEE C B.Hypersonic boundary-layer transition on a flared cone[J].Acta Mechanica Sinica, 2013, 29(1):48-54. doi: 10.1007/s10409-013-0009-2
    [12] ZHU Y D, ZHANG C H, CHEN X, et al.Transition in hypersonic boundary layers:Role of dilatational waves[J].AIAA Journal, 2016, 54(10):3039-3049. doi: 10.2514/1.J054702
    [13] ZHANG C H, LEE C B.Rayleigh-scattering visualization of the development of second-mode waves[J].Journal of Visualization, 2016, 20(1):1-6. http://smartsearch.nstl.gov.cn/paper_detail.html?id=5a3539a380c4fa774c1e2d4be9459e54
    [14] 刘小林, 易仕和, 牛海波, 等.高超声速条件下7°直圆锥边界层转捩实验研究[J].物理学报, 2018, 67(17):174701. http://www.cqvip.com/QK/94684X/201817/676270789.html

    LIU X L, YI S H, NIU H B, et al.Experimental investigation of the hypersonic boundary layer transition on a 7°straight cone[J].Acta Physica Sinica, 2018, 67(17):174701(in Chinese). http://www.cqvip.com/QK/94684X/201817/676270789.html
    [15] 何霖, 易仕和, 陆小革.超声速湍流边界层密度场特性[J].物理学报, 2017, 66(2):024701. http://www.cqvip.com/QK/94684X/20172/671247900.html

    HE L, YI S H, LU X G.Experimental study on the density characteristics of a supersonic turbulent boundary layer[J].Acta Physica Sinica, 2017, 66(2):024701(in Chinese). http://www.cqvip.com/QK/94684X/20172/671247900.html
    [16] KENDALL J M.Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition[J].AIAA Journal, 1974, 13(3):290-299. doi: 10.2514/3.49694
    [17] GROSSIR G, MASUTTI D, CHAZOT O.Flow characterization and boundary layer transition studies in VKI hypersonic facilities: AIAA-2015-0578[R].Reston: AIAA, 2015.
    [18] RUFER S J, BERRIDGE D C.Pressure fluctuation measurements in the NASA Langley 20-inch Mach 6 wind tunnel: AIAA-2012-3262[R].Reston: AIAA, 2012.
    [19] CHYNOWETH B C, WARD C, GREEWOOD R T, et al.Measuring transition and instabilities in a Mach 6 hypersonic quiet wind tunnel: AIAA-2014-2643[R].Reston: AIAA, 2014.
    [20] FUJII K.Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets, 2006, 43(4):731-738. doi: 10.2514/1.17860
    [21] HEITMANN D, RADESPIEL R, KÄHLER C.Investigation of the response of a hypersonic 2D boundary layer to controlled acoustic disturbances[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2013: 23-28.
    [22] 张骞, 陈连忠, 艾邦成.电弧加热流场湍流度对尖锥边界层转捩影响的研究[J].实验流体力学, 2010, 24(6):57-60. http://www.cnki.com.cn/Article/CJFDTotal-LTLC201006012.htm

    ZHANG Q, CHEN L Z, AI B C.Sharp cone boundary layer transition research in arc heated flow field influenced by turbulence[J].Journal of Experiments in Fluid Mechanics, 2010, 24(6):57-60(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-LTLC201006012.htm
    [23] 纪锋, 解少飞, 沈清.高超声速1 MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. http://d.wanfangdata.com.cn/Periodical/kqdlxxb201605007

    JI F, XIE S F, SHEN Q.Hypersonic high frequency (1 MHz) fluctuation pressure testing technology and application[J].Acta aerodynamica Sinica, 2016, 34(5):587-591(in Chinese). http://d.wanfangdata.com.cn/Periodical/kqdlxxb201605007
    [24] 李强, 江涛, 陈苏宇, 等.激波风洞边界层转捩测量技术及应用[J].航空学报, 2019, 40(7):122740. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201908005.htm

    LI Q, JIANG T, CHEN S Y, et al.Measurement technique and application of boundary layer transition in shock tunnel[J].Acta Aeronautica et Astronautica Sinica, 2019, 40(7):122740(in chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201908005.htm
    [25] 韩健.高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D].天津: 天津大学, 2010.

    HAN J.Wavelet analysis and cross bispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D].Tianjin: Tianjin University, 2010(in Chinese).
    [26] 李悦雷.基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D].天津: 天津大学, 2007.

    LI Y L.Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D].Tianjin: Tianjin University, 2007(in Chinese).
    [27] KEGERISE M A, RUFER S J.Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer[J].Experiments in Fluids, 2016, 57:130. doi: 10.1007/s00348-016-2214-9
    [28] RODIGER T.The atomic layer thermopile-A new heat-transfer measurement technique in fluid mechanics and thermodynamics[D].Stuttgart: Institute of Aerodynamics and Gas Dynamics University of Stuttgart, 2010.
    [29] SCHULTZ D L, JONES T V.Heat transfer measurements in short duration hypersonic facilities: AGARD-AG-165[R].[S.l.]: AGARD, 1973.
    [30] GERMAIN P, CUMMINGS E, HORNUNG H.Transition on a sharp cone at high enthalpy: New measurements in the shock tunnel T5: AIAA-1993-0343[R].Reston: AIAA, 1993.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  73
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 录用日期:  2019-12-22
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答