留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hamilton体系的Lagrange方程盒式倾转旋翼无人机建模

吴翰 王正平 周洲 王睿

吴翰, 王正平, 周洲, 等 . 基于Hamilton体系的Lagrange方程盒式倾转旋翼无人机建模[J]. 北京航空航天大学学报, 2020, 46(12): 2320-2328. doi: 10.13700/j.bh.1001-5965.2019.0602
引用本文: 吴翰, 王正平, 周洲, 等 . 基于Hamilton体系的Lagrange方程盒式倾转旋翼无人机建模[J]. 北京航空航天大学学报, 2020, 46(12): 2320-2328. doi: 10.13700/j.bh.1001-5965.2019.0602
WU Han, WANG Zhengping, ZHOU Zhou, et al. Modeling of box-wing tilt-rotor UAV based on Lagrange equation in Hamilton system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2320-2328. doi: 10.13700/j.bh.1001-5965.2019.0602(in Chinese)
Citation: WU Han, WANG Zhengping, ZHOU Zhou, et al. Modeling of box-wing tilt-rotor UAV based on Lagrange equation in Hamilton system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2320-2328. doi: 10.13700/j.bh.1001-5965.2019.0602(in Chinese)

基于Hamilton体系的Lagrange方程盒式倾转旋翼无人机建模

doi: 10.13700/j.bh.1001-5965.2019.0602
基金项目: 

航空科学基金 2016ZA53002

陕西省重点研发计划 2018ZDCXL-GY-03-04

详细信息
    作者简介:

    吴翰  男, 硕士研究生。主要研究方向:飞行器总体设计与无人机多体动力学建模

    王正平  男, 硕士, 教授, 硕士生导师。主要研究方向:飞行器总体设计与结构设计

    通讯作者:

    王正平, E-mail:ad502@nwpu.edu.cn

  • 中图分类号: V211

Modeling of box-wing tilt-rotor UAV based on Lagrange equation in Hamilton system

Funds: 

Aeronautical Science Foundation of China 2016ZA53002

Key Research and Development Program of Shanxi Province 2018ZDCXL-GY-03-04

More Information
  • 摘要:

    针对倾转旋翼飞行器动态倾转过程中动力学建模问题进行了研究。首先,从多体动力学出发,以某盒式倾转旋翼无人机为算例,将该无人机假设成由机翼、机体、涵道风扇、倾转旋翼等组成的多刚体系统。其次,通过不同刚体质心间的位移约束,建立该无人机系统的非保守力和力矩矩阵,以及动能、势能、余虚功和逆势能模型。最后,分别基于Hamilton体系下的Lagrange方程和第二类Lagrange方程推导并建立了该盒式倾转旋翼无人机的动力学模型。仿真结果表明:两类Lagrange方程所建动力学模型的仿真结果与实验数据一致,验证了所提建模方法的合理性;在倾转旋翼转速不变的情况下,倾转过程所用时间越长,无人机掉高越少,轨迹越光滑,但输入能量越多,具体倾转过程的设计要根据实际输入能量、倾转时间等需求进行确定。

     

  • 图 1  盒式倾转旋翼无人机参考坐标系示意图

    Figure 1.  Schematic diagram of reference coordinate systems for box-wing tilt-rotor UAV

    图 2  盒式倾转旋翼无人机任务剖面

    Figure 2.  Mission profile of box-wing tilt-rotor UAV

    图 3  倾转轴与无人机机体内部连接示意图

    Figure 3.  Schematic diagram of internal connection between tilt axis and UAV body

    图 4  实验盒式倾转旋翼无人机示意图

    Figure 4.  Schematic diagram of experimental box-wing tilt-rotor UAV

    图 5  无人机飞行高度仿真与实验结果对比

    Figure 5.  Comparison of UAV flight height between simulation and experimental results

    图 6  无人机前飞速度仿真与实验结果对比

    Figure 6.  Comparison of UAV forward velocity between simulation and experimental results

    图 7  无人机俯仰角仿真与实验结果对比

    Figure 7.  Comparison of UAV pitch angle between simulation and experimental results

    图 8  盒式倾转旋翼无人机前飞速度

    Figure 8.  Forward velocity of box-wing tilt-rotor UAV

    图 9  盒式倾转旋翼无人机上升速度

    Figure 9.  Rising velocity of box-wing tilt-rotor UAV

    图 10  盒式倾转旋翼无人机飞行高度

    Figure 10.  Flight height of box-wing tilt-rotor UAV

    图 11  盒式倾转旋翼无人机迎角

    Figure 11.  Angle of attack of box-wing tilt-rotor UAV

    图 12  盒式倾转旋翼无人机输入能量

    Figure 12.  Input energy of box-wing tilt-rotor UAV

    表  1  盒式倾转旋翼无人机具体参数

    Table  1.   Specific parameters of box-wing tilt-rotor UAV

    参数 数值
    盒式倾转旋翼无人机最大起飞总重/kg 7.5
    盒式倾转旋翼无人机机翼总面积/m2 0.8
    盒式倾转旋翼无人机展长/m 2
    盒式倾转旋翼无人机弦长/m 0.2
    盒式倾转旋翼无人机机身长度/m 1.44
    有效载荷/kg 2.5
    最大升阻比 11.4
    翼载荷/(kg·m-2) 8.75
    下载: 导出CSV
  • [1] 孙凯军, 张练, 付义伟, 等.某型倾转旋翼机的旋翼桨叶气动优化设计[J].航空工程进展, 2019, 10(3):340-347.

    SUN K J, ZHANG L, FU Y W, et al.Aerodynamic optimization design of the rotor blade of a tilt-rotor aircraft[J].Advances in Aeronautical Science and Engineering, 2019, 10(3):340-347(in Chinese).
    [2] XIANG Z, XU W Q, YAN S, et al.Study on the effect of tilting-rotor structure on the lift of small tilt rotor aircraft[C]//International Conference on Advanced Robotics and Mechatronics.Piscataway: IEEE Press, 2017: 380-385.
    [3] 曹芸芸, 陈仁良.倾转旋翼飞行器的操纵策略和配平方法[J].南京航空航天大学学报, 2009, 41(1):6-10.

    CAO Y Y, CHEN R L.Control strategy for tilt-rotor aircraft trimming in steady level flight[J].Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1):6-10(in Chinese).
    [4] 吴翰, 王正平, 周洲, 等.多旋翼固定翼无人机多体动力学建模[J].西北工业大学学报, 2019, 37(5):928-934.

    WU H, WANG Z P, ZHOU Z, et al.Modeling and simulation for multi-rotor fixed-wing UAV based on multibody dynamics[J].Journal of Northwestern Polytechnical University, 2019, 37(5):928-934(in Chinese).
    [5] LI H X, QU X J, WANG W J.Multi-body motion modeling and simulation for tilt rotor aircraft[J].Chinese Journal of Aeronautics, 2010, 23(4):415-422.
    [6] SASONGKO R A, MUHAMMAD B.Modeling and simulation of rotor dynamics of a tilt-rotor aircraft[C]//International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering.Piscataway: IEEE Press, 2017: 51-56.
    [7] 陈建平, 宁雷鸣, 张红英, 等.基于多体动力学的大型翼伞系统飞行仿真分析[J].飞行力学, 2015, 33(6):487-490. http://www.cnki.com.cn/Article/CJFDTotal-FHLX201506002.htm

    CHEN J P, NING L M, ZHANG H Y, et al.Flight simulation of large parafoil-payload systems based on multibody dynamics[J].Flight Dynamics, 2015, 33(6):487-490(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHLX201506002.htm
    [8] ZHAO Z J, REN G X.Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft[J].AIAA Journal, 2011, 49(1):41-53. doi: 10.2514/1.45334
    [9] 周平, 梁立孚.非保守系统的Lagrange方程[J].哈尔滨工程大学学报, 2017, 38(3):452-459.

    ZHOU P, LIANG L F.Lagrange equation of non-conservative systems[J].Journal of Harbin Engineering University, 2017, 38(3):452-459(in Chinese).
    [10] 邓子辰, 于洪泳, 黄立新, 等.Hamilton体系下混凝土壳体结构的基本方程及求解方法[J].西北工业大学学报, 2005, 23(5):602-605.

    DENG Z C, YU H Y, HUANG L X, et al.A new systematic computational methodology for concrete shell structures[J].Journal of Northwestern Polytechnical University, 2005, 23(5):602-605(in Chinese).
    [11] FORBES J R, BARFOOT T D, DAMAREN C J.Dynamic modeling and stability analysis of a power-generating tumbleweed rover[J].Multibody System Dynamics, 2010, 24(4):413-439.
    [12] WU H, WANG Z P, ZHOU Z, et al.Modeling of small UAV parachute recovery system based on Lagrangian method[C]//International Conference on Mechatronics and Automation.Piscataway: IEEE Press, 2019: 1127-1132.
    [13] JIANG H B, CAO S L, CHEN Z Q.Lift and drag coefficients of flow around a flat plate at high attack angles[J].Chinese Journal of Applied Mechanics, 2011, 28(5):518-520. http://www.researchgate.net/publication/288643097_Lift_and_drag_coefficients_of_flow_around_a_flat_plate_at_high_attack_angles
    [14] GARRARD W L.Application of inflation theories to preliminary parachute force and stress analysis: AIAA-91-0862-CP[R].Reston: AIAA, 1991: 230-239.
    [15] 孙凯.涵道风扇六旋翼建模与控制技术研究[D].南京: 南京航空航天大学, 2018: 15-20.

    SUN K.Research on modeling and control technology of ducted fan hexrcopter[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 15-20(in Chinese).
    [16] HOGAN F R, FORBES J R.Modeling of spherical robots rolling on generic surfaces[J].Multibody System Dynamics, 2015, 35(1):91-109.
    [17] MAI B, HIROSHI Y.New Lambert algorithm using the Hamilton-Jacobi-Bellman equation[J].Journal of Guidance, Control, and Dynamics, 2010, 33(3):1000-1008.
    [18] ANDREAS G.a Rigorous proof for the equivalence of the projective Newton-Euler equations and the Lagrange equations of second kind for spatial rigid multibody systems[J].Multibody System Dynamics, 2019, 45(1):87-103.
    [19] YAN L, XU W F, HU Z H, et al.Virtual-base modeling and coordinated control of a dual-arm space robot for target capturing and manipulation[J].Multibody System Dynamics, 2019, 45(4):431-455.
    [20] CORONEL-ESCAMILLA A, TORRES F, COMEZ-AGUILAR J F, et al.On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning[J].Multibody System Dynamics, 2018, 43(3):257-277.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  552
  • HTML全文浏览量:  63
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-25
  • 录用日期:  2020-02-14
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答