留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复合控制的磁悬浮CMG动框架效应抑制

王舒 郑世强

王舒, 郑世强. 基于复合控制的磁悬浮CMG动框架效应抑制[J]. 北京航空航天大学学报, 2020, 46(12): 2339-2347. doi: 10.13700/j.bh.1001-5965.2019.0610
引用本文: 王舒, 郑世强. 基于复合控制的磁悬浮CMG动框架效应抑制[J]. 北京航空航天大学学报, 2020, 46(12): 2339-2347. doi: 10.13700/j.bh.1001-5965.2019.0610
WANG Shu, ZHENG Shiqiang. Composite control method for gimbal excitation effect suppression of magnetically suspended CMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2339-2347. doi: 10.13700/j.bh.1001-5965.2019.0610(in Chinese)
Citation: WANG Shu, ZHENG Shiqiang. Composite control method for gimbal excitation effect suppression of magnetically suspended CMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2339-2347. doi: 10.13700/j.bh.1001-5965.2019.0610(in Chinese)

基于复合控制的磁悬浮CMG动框架效应抑制

doi: 10.13700/j.bh.1001-5965.2019.0610
基金项目: 

国家自然科学基金 61822302

详细信息
    作者简介:

    王舒  女, 硕士研究生。主要研究方向:磁悬浮控制力矩陀螺磁轴承抗干扰控制技术

    郑世强  男, 博士, 副教授, 博士生导师。主要研究方向:航天器新型惯性执行机构、高速磁悬浮电机技术及应用

    通讯作者:

    郑世强, E-mail:zhengshiqiang@buaa.edu.cn

  • 中图分类号: TP273+.3

Composite control method for gimbal excitation effect suppression of magnetically suspended CMGs

Funds: 

National Nalural Science Foundation of China 61822302

More Information
  • 摘要:

    针对磁悬浮控制力矩陀螺(MSCMG)动框架效应导致转子悬浮精度和稳定性降低的问题,提出一种角加速率自适应前馈控制与自抗扰控制(ADRC)相结合的复合控制方法。建立了MSCMG转子动力学模型,分析了框架转动情况下的磁轴承扰动力矩,设计了角加速率自适应算法和线性扩张状态观测器,并结合状态反馈控制设计了复合控制器,同时对磁轴承控制系统进行了稳定性分析,仿真结果验证了所提复合控制方法的有效性。利用研制的样机搭建实验平台进行验证,结果表明:所提方法与传统PID控制方法相比,磁悬浮转子收敛后的位移峰峰值降低了39.6%,提高了磁悬浮系统的抗干扰能力。

     

  • 图 1  磁悬浮控制力矩陀螺示意图

    Figure 1.  Schematic diagram of MSCMG

    图 2  磁悬浮高速转子系统坐标图

    Figure 2.  System coordinate of magnetic levitation high-speed rotor

    图 3  MSCMG磁轴承复合控制方法原理框图

    Figure 3.  Principle block diagram for magnetic bearing composite control method of MSCMG

    图 4  自抗扰控制器结构

    Figure 4.  Structure diagram of active disturbance rejection controller

    图 5  角加速率自适应前馈控制框图

    Figure 5.  Block diagram of adaptive feedforward control module with angular acceleration rate

    图 6  复合控制下磁轴承系统根轨迹图

    Figure 6.  Root locus of magnetic bearing system with composite control method

    图 7  角加速率自适应算法权值波形

    Figure 7.  Weight value waveform of adaptive angular acceleration rate algorithm

    图 8  基于复合控制的转子位移波形

    Figure 8.  Rotor displacement waveform with composite control method

    图 9  MSCMG实验平台

    Figure 9.  Experimental setup of MSCMG

    图 10  基于PID控制的转子位移波形

    Figure 10.  Rotor displacement waveform with PID control method

    图 11  基于ADRC控制下的转子位移波形

    Figure 11.  Rotor displacement waveform with ADRC method

    图 12  复合控制下的转子位移波形

    Figure 12.  Rotor displacement waveform with composite control method

    表  1  MSCMG模型参数

    Table  1.   Model parameters of MSCMG

    参数 数值
    转子质量m/kg 16.7
    转子赤道转动惯量Jr/(kg·m2) 0.8286
    转子极转动惯量Jz/(kg·m2) 0.1302
    磁轴承中心到转子质心距离lm/m 0.0725
    传感器到转子质心距离ls/m 0.1110
    电流刚度ki/(N·A-1) 600
    位移刚度kh/(N·m-1) 2.4×106
    下载: 导出CSV

    表  2  磁轴承转子控制参数

    Table  2.   Control parameters of magnetic bearing rotor

    参数 数值
    比例系数Kp 3.7578
    积分系数Ki 261.2088
    微分系数Kd 0.0081
    控制器带宽ωc 220
    观测器带宽ωo 4000
    收敛因子μ 5×10-4
    下载: 导出CSV
  • [1] 房建成, 任元.磁悬浮控制力矩陀螺技术[M].北京:国防工业出版社, 2014:1-17.

    FANG J C, REN Y.Magnetically suspended control moment gyroscope technology[M].Beijing:National Defense Industry Press, 2014:1-17(in Chinese).
    [2] 李海涛, 房建成.基于扩张状态观测器的DGMSCMG框架伺服系统振动抑制方法[J].航空学报, 2010, 31(6):1213-1219.

    LI H T, FANG J C.Study on system vibration suppression method based on ESO used in gimbal servo system of DGMSCMG[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1213-1219(in Chinese).
    [3] 邓瑞清, 赵岩, 房建成, 等.磁悬浮飞轮与机械飞轮干扰特性的对比分析[J].宇航学报, 2016, 37(8):917-923.

    DENG R Q, ZHAO Y, FANG J C, et al.Disturbance characteristics analysis of magnetically suspended and mechanical flywheels[J].Journal of Astronautica, 2016, 37(8):917-923(in Chinese).
    [4] 谢进进, 刘刚, 文通.双框架磁悬浮控制力矩陀螺磁轴承负载力矩复合补偿的控制[J].光学精密工程, 2015, 23(8):2211-2219.

    XIE J J, LIU G, WEN T.Composite compensation for load torque of active magnetic bearing in DGMSCMG[J].Optics and Precision Engineering, 2015, 23(8):2211-2219(in Chinese).
    [5] 刘强, 赵勇, 曹建树, 等.新型微框架磁悬浮飞轮用洛伦兹力磁轴承[J].宇航学报, 2017, 38(5):481-489. http://www.cnki.com.cn/Article/CJFDTotal-YHXB201705006.htm

    LIU Q, ZHAO Y, CAO J S, et al.Lorentz magnetic bearing for novel vernier gimballing magnetically suspended flywheel[J].Journal of Aatronautics, 2017, 38(5):481-489(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YHXB201705006.htm
    [6] 霍甲, 魏彤, 房建成.基于简化FXLMS算法的磁悬浮控制力矩陀螺动框架效应精确补偿方法实验研究[J].宇航学报, 2010, 31(3):786-792.

    HUO J, WEI T, FANG J C.Experimental research on accurate compensation of moving-gimbal effects based on simplified FXLMS algorithm in magnetically suspended control moment gyroscope[J].Journal of Astronautica, 2010, 31(3):786-792(in Chinese).
    [7] 田希晖, 房建成, 刘刚.一种磁悬浮飞轮增益预调交叉反馈控制方法[J].北京航空航天大学学报, 2006, 32(11):1299-1303. http://d.wanfangdata.com.cn/Periodical/bjhkhtdxxb200611009

    TIAN X H, FANG J C, LIU G.Gain scheduling cross feedback control approach for magnetic suspending flywheel[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11):1299-1303(in Chinese). http://d.wanfangdata.com.cn/Periodical/bjhkhtdxxb200611009
    [8] 王澄泓, 汪希平, 吴明贵.电磁推力轴承刚度非线性的研究[J].机械科学与技术, 2005, 24(9):54-57.

    WANG C H, WANG X P, WU M G.Study on non-linearity of stiffness of magnetic thrust bearing[J].Mechanical Science and Technology, 2005, 24(9):54-57(in Chinese).
    [9] SUZUKI Y.Acceleration feedforward control for active magnetic bearing systems excited by ground motion[J].IEEE Proceedings of Control Theory and Applications, 1998, 145(2):113-118.
    [10] 魏彤, 房建成.磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J].宇航学报, 2005, 26(1):19-23.

    WEI T, FANG J C.Moving-gimbal effect and angular rate feedforward control in magnetically suspended rotor system of CMG[J].Journal of Astronautics, 2005, 26(1):19-23(in Chinese).
    [11] 吕奇超, 吕东元, 李延宝, 等.小型磁悬浮CMG高速转子动框架效应前馈补偿与实验[J].飞控与探测, 2019, 2(1):49-55. http://www.cnki.com.cn/Article/CJFDTotal-FKTC201901008.htm

    LV Q C, LV D Y, LI Y B, et al.Feed-forward compensation and experiment research in moving gimbal effects on high speed rotor of small magnetically suspended CMG[J].Flight Control and Detection, 2019, 2(1):49-55(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FKTC201901008.htm
    [12] 魏彤, 房建成.磁悬浮控制力矩陀螺动框架效应的FXLMS自适应精确补偿控制方法仿真研究[J].宇航学报, 2006, 27(6):1205-1210. http://www.cqvip.com/Main/Detail.aspx?id=23719189

    WEI T, FANG J C.Accurate compensation of moving-gimbal effects based on FXLMS algorithm in magnetically suspended control moment gyroscope[J].Journal of Astronautics, 2006, 27(6):1205-1210(in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=23719189
    [13] KANG M, YOON W.Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm[J].IEEE Translations on Control Systems Technology, 2006, 14(1):134-141.
    [14] 韩京清.自抗扰控制技术-估计补偿不确定因素的控制技术[M].北京:国防工业出版社, 2008:150-260.

    HAN J Q.Active disturbance rejection control technique -The technique for estimating and compensation the uncertainties[M].Beijing:National Defense Industry Press, 2008:150-260(in Chinese).
    [15] 韩京清.自抗扰控制器及其应用[J].控制与决策, 1998, 13(1):19-23.

    HAN J Q.Auto-disturbances-rejection controller and its applications[J].Control and Decision, 1998, 13(1):19-23(in Chinese).
    [16] 丛爽, 孙光立, 邓科, 等.陀螺稳定平台扰动的自抗扰及其滤波控制[J].光学精密工程, 2016, 24(1):169-177.

    CONG S, SUN G L, DENG K, et al.Active disturbance rejection and filter control of gyro-stabilized platform[J].Optics and Precision Engineering, 2016, 24(1):169-177(in Chinese).
    [17] 李磊, 任元, 陈晓岑, 等.基于ADRC和RBF神经网络的MSCSG控制系统设计[J].北京航空航天大学学报, 2020, 46(10):1966-1972.

    LI L, REN Y, CHEN X C, et al.Design of MSCSG control system based on active disturbance rejection controller and RBF neural network[J].Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10):1966-1972.
    [18] 魏彤, 房建成, 刘珠荣.双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J].机械工程学报, 2010, 46(2):159-165.

    WEI T, FANG J C, LIU Z R.Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control[J].Journal of Mechanical Engineering, 2010, 46(2):159-165(in Chinese).
    [19] 崔培玲, 杨珊, 李海涛.双框架MSCMG框架伺服系统的动力学解耦及扰动补偿[J].航空学报, 2016, 37(3):916-927. http://www.cnki.com.cn/Article/CJFDTotal-HKXB201603018.htm

    CUI P L, YANG S, LI H T.Dynamic decoupling control and disturbance compensation of gimbal servo system of double gimbal MSCMG[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(3):916-927(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB201603018.htm
    [20] GAO Z.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference.Piscataway: IEEE Press, 2003: 4989-4996.
    [21] ZHENG Q, DONG L, LEE D H, et al.Active disturbance rejection control for MEMS gyroscopes[J].IEEE Transactions on Control Systems Technology, 2009, 17(6):1432-1438.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  76
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-04
  • 录用日期:  2020-03-13
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答