-
摘要:
收发平台分置于地球同步轨道(GEO)和无人机(UAV)的GEO-UAV空天双基合成孔径雷达(SAR)系统能够实现对重点观测区域高精度、高时相的观测,二维分辨能力为其重要的系统指标。针对GEO-UAV空天双基SAR的二维分辨能力进行了分析:首先,基于梯度法给出了空天双基SAR矢量化的二维分辨率的计算方法;其次,基于GEO-UAV空天双基SAR的构型计算了其距离分辨率、方位分辨率以及二维分辨矢量夹角;最后,基于系统的二维分辨能力提出了GEO-UAV空天双基SAR的构型设计准则,通过点目标仿真对该准则的有效性进行了验证。所提设计准则能够为GEO-UAV空天双基SAR的系统设计提供有力支撑。
-
关键词:
- 合成孔径雷达(SAR) /
- 双基雷达 /
- 星机双基SAR /
- SAR分辨率 /
- 梯度法
Abstract:Mounted on the Geostationary Earth Orbit (GEO) and Unmanned Aerial Vehiclel (UAV) platforms, the GEO-UAV bistatic Synthetic Aperture Radar (SAR) can achieve precise and quick observation on the interested areas. The two-dimensional resolution ability is important performance metrics. The analysis on the two-dimensional resolution ability of GEO-UAV bistatic SAR is given. First, the calculation method of bistatic SAR vectored two-dimensional resolution based on the gradient method is given. Then, the range resolution, azimuth resolution and the angle between the azimuth and range vector are calculated according to the configuration of the GEO-UAV bistatic SAR. Finally, based on the two-dimensional resolution ability of the system, a configuration criterion for GEO-UAV bistatic SAR is proposed, which is verified via experiments on simulated point targets. The proposed configuration criterion is beneficial to the system design of GEO-UAV bistatic SAR.
-
表 1 GEO-UAV空天双基SAR参数
Table 1. Parameters of GEO-UAV bistatic SAR
参数 发射机 接收机 波长/m 0.24 0.24 带宽/MHz 250 250 接收天线长度/m 0.75 0.75 平台高度/km 35786 500 平台运动速度/(m·s-1) 30 65 地面入射角/(°) 45 35 -
[1] CUMMING I G, WONG F H.Digital processing of synthetic aperture radar data:Algorithms and implementation[M].Beijing:Publishing House of Electronics Industry, 2012(in Chinese). [2] 李春升, 王伟杰, 王鹏波, 等.星载SAR技术的现状与发展趋势[J].电子与信息学报, 2016, 38(1):229-240.LI C S, WANG W J, WANG P B, et al.Current situation and development trends of spaceborne SAR technology[J].Journal of Electronics and Information Technology, 2016, 38(1):229-240(in Chinese). [3] YAN X Y, CHEN J, LIYANGAGE B, et al.A light-weight SAR system for multi-rotor UAV platform using LFM quasi-CW waveform[C]//Geoscience and Remote Sensing Symposium.Piscataway: IEEE Press, 2016: 7346-7349. [4] 徐海胜, 宋红军, 邓云凯, 等.星/机双基SAR成像技术研究[J].电子与信息学报, 2011, 33(10):2438-2444.XU H S, SONG H J, DENG Y K, et al.A study of spaceborne/airborne hybrid bistatic SAR imaging[J].Journal of Electronics and Information Technology, 2011, 33(10):2438-2444(in Chinese). [5] KRIEGER G, MOREIRA A.Spaceborne bi- and multistatic SAR:Potential and challenges[J].IEEE Proceedings-Radar Sonar and Navigation, 2013, 153(3):184-198. [6] BEHNER F, REUTER S, NIES H, et al.High resolution bistatic experiments using TerraSAR-X staring spotlight mode and the very high resolution SAR mode of the Fraunhofer FHR PAMIR system[C]//Proceedings of the Eusar: European Conference on Synthetic Aperture Radar.Piscataway: IEEE Press, 2016: 741-744. [7] 李谨成.空天双/多基SAR成像与探测技术研究[D].北京: 北京航空航天大学, 2018: 18-45.LI J C.Bistatic and multistatic SAR imaging and exploration technology based on aero-space platforms[D].Beijing: Beihang University, 2018: 18-45(in Chinese). [8] SUN Z, WU J, YANG J, et al.Path planning for GEO-UAV bistatic SAR using constrained adaptive multiobjective differential evolution[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(11):6444-6457. [9] SUN Z, WU J, PEI J, et al.Inclined geosynchronous spaceborne-airborne bistatic SAR:Performance analysis and mission design[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):343-357. [10] CARDILLO G P.On the use of the gradient to determine bistatic SAR resolution[C]//Proceedings of the Antennas and Propagation Society International Symposium.Piscataway: IEEE Press, 1990: 1032-1035. [11] ANTONNIO M, ALFREDO R.Spatial resolution of bistatic synthetic aperture radar:Impact of acquisition geometry on imaging performance[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10):3487-3503. [12] 郑经波.地球同步轨道合成孔径雷达系统分析及工作模式研究[D].北京: 中国科学院大学, 2011.ZHENG J B.System analysis and working mode GEO SAR[D].Beijing: University of Chinese Academy of Sciences, 2011(in Chinese). [13] YU Z.Concepts, properties, and imaging technologies for GEO SAR[J].Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7494:749407. [14] ULANDER L M H, HELLSTEN H, STENSTROM G.Synthetic-aperture radar processing using fast factorized back-projection[J].IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3):760-776. [15] MARC R C, PAUL P, KRIEGER G, et al.Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4):2949-2966.