留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极稀疏投影数据的CT图像重建

武丽君 孙丰荣 杨江飞 于倩蕾 贺芳芳

武丽君, 孙丰荣, 杨江飞, 等 . 极稀疏投影数据的CT图像重建[J]. 北京航空航天大学学报, 2020, 46(12): 2366-2373. doi: 10.13700/j.bh.1001-5965.2019.0613
引用本文: 武丽君, 孙丰荣, 杨江飞, 等 . 极稀疏投影数据的CT图像重建[J]. 北京航空航天大学学报, 2020, 46(12): 2366-2373. doi: 10.13700/j.bh.1001-5965.2019.0613
WU Lijun, SUN Fengrong, YANG Jiangfei, et al. CT image reconstruction from ultra-sparse projection data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2366-2373. doi: 10.13700/j.bh.1001-5965.2019.0613(in Chinese)
Citation: WU Lijun, SUN Fengrong, YANG Jiangfei, et al. CT image reconstruction from ultra-sparse projection data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2366-2373. doi: 10.13700/j.bh.1001-5965.2019.0613(in Chinese)

极稀疏投影数据的CT图像重建

doi: 10.13700/j.bh.1001-5965.2019.0613
基金项目: 

国家自然科学基金 81671703

山东省自然科学基金 ZR2019MF048

详细信息
    作者简介:

    武丽君  女, 硕士研究生。主要研究方向:生物医学信号与信息处理

    孙丰荣  男, 博士, 教授。主要研究方向:CT图像重建、基于人工智能的医学影像分析与诊断

    通讯作者:

    孙丰荣, E-mail:sunfr_journal@163.com

  • 中图分类号: TP391;TN911.73

CT image reconstruction from ultra-sparse projection data

Funds: 

National Natural Science Foundation of China 81671703

Nalural Seience Foundation of Shandong Province ZR2019MF048

More Information
  • 摘要:

    从稀疏投影数据足够精确地重建断层图像,从而能够在显著降低计算机断层成像(CT)检查X-射线辐射剂量的前提下,提供充分适宜影像学临床诊断需求的重建图像。针对圆周扫描扇束投影的二维CT图像重建,提出了投影驱动的系统模型,并将CT迭代图像重建与压缩感知(CS)理论相结合,设计了一种CT迭代图像重建算法,且将算法扩展到圆周扫描锥束投影的三维CT图像重建。仿真实验结果表明:在极稀疏投影数据的条件下([0,2π)范围内扇束/锥束扫描不超过20个投影角度),算法数值精度高,计算复杂度低,内存开销少,有很强的工程实用性。

     

  • 图 1  二维扇束投影示意图与细节图

    Figure 1.  Schematic diagram and detailed diagram of two-dimensional fan-beam projection

    图 2  正/反投影矩阵元素示意图

    Figure 2.  Schematic diagram of matrix elements of forward/backward projection

    图 3  循环2

    Figure 3.  Loop 2

    图 4  圆周CT扫描系统结构示意图

    Figure 4.  Schematic diagram of circular CT scanning system

    图 5  Shepp-Logan模型和重建图像及其中心行像素值比较

    Figure 5.  Shepp-Logan model and reconstructed images, as well as comparison of pixel values of center row between them

    图 6  各个投影角度数下不同算法的重建图像质量对比

    Figure 6.  Comparison of reconstructed image quality of different algorithms under various projection angles

    图 7  Shepp-Logan模型透视图和重建图像(第125层和128层)

    Figure 7.  Perspective of Shepp-Logan model and reconstructed images(125th and 128th layers)

    表  1  CT扫描参数和仿真模型信息

    Table  1.   CT scanning parameters and simulation model information

    仿真参数 二维扇束 三维锥束
    检测器类型 平板检测器 平板检测器
    行/列检测器数 512 256
    行/列检测器中心 255.5 127.5
    行/列检测器间距/mm 1.0 1.0
    光源到旋转中心距离/mm 640 640
    旋转中心到检测器中心距离/mm 640 640
    仿真模型 二维Shepp-Logan 三维Shepp-Logan模型
    模型尺寸:512×512 模型尺寸:256×256×256
    模型像素尺寸:0.5mm×0.5mm 体素尺寸:0.5mm×0.5mm×0.5mm
    下载: 导出CSV

    表  2  各个投影角度数下不同算法的重建结果

    Table  2.   Reconstruction results of different algorithms under various projection angles

    重建算法 NRMSE PSNR UQI 重建时间/s
    FBP 0.9641 12.4663 0.5222 4.094
    ART-TV 0.3387 21.5526 0.9181 69.585
    CSVD 0.1958 26.3113 0.9734 32.997
    下载: 导出CSV

    表  3  CSVD算法重建图像质量评价

    Table  3.   Quality evaluation of reconstructed images using CSVD algorithm

    质量评价指标 20个投影角度 18个投影角度
    NRMSE 0.2887 0.2980
    PSNR 22.9883 22.7137
    UQI 0.9406 0.9362
    下载: 导出CSV
  • [1] SABA L, SURI J S.Multi-detector CT imaging principles, head, neck, and vascular systems[M].Boca Raton:CRC Press, 2013:103-122.
    [2] OHNESORGE B M, FLOHR T G, BECKER C R, et al.Multi-slice CT technology[M].Berlin:Springer, 2007:41-69.
    [3] NORELLI L J, COATES A D, KOVASZNAY B M.Cancer risk from diagnostic radiology in a deliberate self-harm patient[J].Acta Psychiatrica Scandinavica, 2010, 122(5):427-430. http://europepmc.org/abstract/MED/20136800
    [4] RAMPINELLI C, DE M P, ORIGGI D, et al.Exposure to low dose computed tomography for lung cancer screening and risk of cancer:Secondary analysis of trial data and risk-benefit analysis[J].British Medical Journal, 2017, 356(347):8. http://www.ncbi.nlm.nih.gov/pubmed/28179230
    [5] PEARCE M S, SALOTTI J A, LITTLE M P, et al.Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumors:A retrospective cohort study[J]. Lancet, 2012, 380(9840):499-505. http://neuro-oncology.oxfordjournals.org/external-ref?access_num=22681860&link_type=MED
    [6] MEHYAR L S, ABU-ARJA M H, STANEK J R, et al.The risk of developing secondary central nervous system tumors after diagnostic irradiation from computed tomography in pediatrics:A literature review[J].Pediatric Neurology, 2019, 98:18-24. http://www.sciencedirect.com/science/article/pii/S0887899418311056
    [7] SIDKY E Y, KAO C M, PAN X.Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J].Journal of X-ray Science and Technology, 2006, 14(2):119-139. http://arxiv.org/abs/0904.4495
    [8] SIDKY E Y, PAN X.Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J].Physics in Medicine and Biology, 2008, 53(17):4777-4807. http://europepmc.org/articles/PMC2630711/
    [9] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
    [10] CHEN G H, TANG J, LENG S.Prior image constrained compressed sensing (PICCS):A method to accurately reconstruct dynamic CT images from highly under-sampled projection data sets[J].Medical Physics, 2008, 35(2):660-663. doi: 10.1118/1.2836423
    [11] DEBATIN M, ZYGMANSKI P, STSEPANKOU D, et al.CT reconstruction from few-views by anisotropic total variation minimization[C]//2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.Piscataway: IEEE Press, 2012: 2295-2296.
    [12] DEBATIN M, HESSER J.Accurate low-dose iterative CT reconstruction from few projections by generalized anisotropic total variation minimization for industrial CT[J].Journal of X-ray Science and Technology, 2015, 23(6):701-726. http://www.ncbi.nlm.nih.gov/pubmed/26756407
    [13] CANDES E, ROMBERG J, TAO T.Stable signal recovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223. doi: 10.1002/cpa.20124/full
    [14] MAN B D, BASU S.Distance-driven projection and backprojection[C]//2002 IEEE Nuclear Science Symposium Conference Record.Piscataway: IEEE Press, 2002: 1477-1480.
    [15] MAN B D, BASU S.Distance-driven projection and backprojection in three dimensions[J].Physics in Medicine and Biology, 2004, 49(11):2463-2475. http://europepmc.org/abstract/med/15248590
    [16] TUY H K.An inversion formula for cone-beam reconstruction[J].SIAM Journal on Applied Mathematics, 1983, 43(3):546-552.
    [17] WANG Z, BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters, 2002, 9(3):81-84. http://www.emeraldinsight.com/servlet/linkout?suffix=b80&dbid=16&doi=10.1108%2FEC-06-2012-0145&key=10.1109%2F97.995823
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  804
  • HTML全文浏览量:  47
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-05
  • 录用日期:  2020-06-12
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答