Longitudinal maneuver simulation of an X-51A-like aircraft based on numerical virtual flight
-
摘要:
吸气式高超声速飞行器在机动过程中,由于构型复杂,气动特性呈现强烈的非定常特性。传统基于数据库或气动力模型的飞行仿真不能准确描述机动过程中复杂的气动特性和运动规律。针对这一问题,基于现代软件分布式、模块化的发展趋势,建立了一个高效的数值虚拟飞行仿真平台。利用该平台,对一种类X-51A外形的吸气式高超声速飞行器开展了纵向机动闭环数值仿真,并与工程方法的结果进行了对比。研究发现:对于类X-51A外形的吸气式高超声速飞行器,在纵向拉起时,工程方法给出的结果可能不能完全反映非定常效应的影响。此时,应该采用更为精确的虚拟飞行方法来研究飞行器的闭环响应特性。此外,借助该仿真平台还研究了舵回路时间常数对控制系统的影响,为控制律设计提供了一定的参考。
Abstract:In the maneuvering process of air-breathing hypersonic vehicles, the aerodynamic characteristics show strong unsteady characteristics due to the complicated configuration. Traditional flight simulations based on database or aerodynamic models cannot exactly describe the complex aerodynamic characteristics and motion characteristics in the maneuvering process. To solve this problem, a numerical virtual flight simulation platform is established based on the distributed and modular development trend of modern software. With this coupled platform, longitudinal maneuvering simulations of an X-51A-like aircraft is carried out and the results are compared with those of the engineering method. It is found that For the X-51A-like air breathing hypersonic vehicle, the results given by the engineering method may not fully reflect the influence of unsteady effects when it pitches up longitudinally. In this case, the more accurate virtual flight method should be used to study the closed-loop response characteristics of the vehicle.In addition, the influence of the rudder loop time constant on the control system is also studied with the aid of the simulation platform, which provides a certain reference for the design of the control law.
-
表 1 不同Td下控制系统的性能指标
Table 1. Performance indexes of control system under different Td
Td td tr tp ts(±5%) σ% 0 0.355 0.430 0.808 0.59 4.20 0.05 0.366 0.361 0.749 1.44 5.96 0.1 0.388 0.326 0.856 2.01 16.0 0.2 0.382 0.320 0.787 6.02 31.6 -
[1] HANK J M, MURPHY J S, MUTZMAN R C.The X-51A scramjet engine flight demonstration program: AIAA-2008-2540[R].Reston: AIAA, 2008. [2] 余华峰, 刘宏康, 陈树生, 等.类X-51A飞行器非定常湍流精细模拟[J].北京航空航天大学学报, 2019, 45(3):624-632. doi: 10.13700/j.bh.1001-5965.2018.0409YU H F, LIU H K, CHEN S S, et al.High-resolution unsteady turbulence simulation of an X-51A-like aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3):624-632(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0409 [3] SALAS M D.Digital flight:The last CFD aeronautical grand challenge[J].Journal of Scientific Computing, 2006, 28(2-3):479-505. doi: 10.1007/s10915-006-9087-7 [4] CAI H M.Virtual flight simulation of a dual rotor micro air vehicle[J].International Journal of Computational Fluid Dynamics, 2015, 29(2):192-198. doi: 10.1080/10618562.2015.1016426 [5] CHEN Q, CHEN J Q, XIE Y F, et al.Study and application of virtual flight simulation for rolling control of vehicles[J].Journal of Computational Science, 2017, 21:77-85. doi: 10.1016/j.jocs.2017.05.009 [6] 张来平, 马戎, 常兴华, 等.虚拟飞行中气动、运动和控制耦合的数值模拟技术[J].力学进展, 2014, 44:376-417. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400010.htmZHANG L P, MA R, CHANG X H, et al.Review of aerodynamics/kinematics/flight control coupling method in virtual flight simulations[J].Advances in Mechanics, 2014, 44:376-417(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201400010.htm [7] 达兴亚, 陶洋, 赵忠良.基于预估校正和嵌套网格的虚拟飞行数值模拟[J].航空学报, 2012, 33(6):977-983. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htmDA X Y, TAO Y, ZHAO Z L.Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206003.htm [8] ZHANG L P, CHANG X H, MA R, et al.A CFD-based numerical virtual flight simulator and its application in control law design of a maneuverable missile model[J].Chinese Journal of Aeronautics, 2019, 32(12):2577-2591. doi: 10.1016/j.cja.2019.07.001 [9] 陈琦, 郭勇颜, 谢昱飞, 等.PID控制器与CFD的耦合模拟技术研究及应用[J].航空学报, 2016, 37(8):2507-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608017.htmCHEN Q, GUO Y Y, XIE Y F, et al.Research and application of coupled simulation techniques of PID controller and CFD[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2507-2516(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608017.htm [10] 李锋, 杨云军, 刘周, 等.飞行器气动/飞行/控制一体化耦合模拟技术[J].空气动力学学报, 2015, 33(2):156-161. doi: 10.7638/kqdlxxb-2014.0097LI F, YANG Y J, LIU Z, et al.Integrative simulation technique of coupled aerodynamics and flight dynamics with control law on a vehicle[J].Acta Aerodynamica Sinica, 2015, 33(2):156-161(in Chinese). doi: 10.7638/kqdlxxb-2014.0097 [11] MORTON S A, EYMANN T A, LAMBERSON S, et al.Relative motion simulations using an overset multi-mesh paradigm with kestrel v3[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012. [12] 张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40:424-447. doi: 10.6052/1000-0992-2010-4-J2009-123ZHANG L P, DENG X G, ZHANG H X.Reviews of moving grid generation techniques and numerical methods for unsteady flow[J].Advances in Mechanics, 2010, 40:424-447(in Chinese). doi: 10.6052/1000-0992-2010-4-J2009-123 [13] CHEN Q, YUAN X X, WANG X, et al.Study of saddle-node bifurcation for longitudinal flight with CFD/RBD technique[J].Journal of Computational Science, 2018, 29:153-162. doi: 10.1016/j.jocs.2018.10.006 [14] CHATURVEDI N A, SANYAL A K, MCCLAMROCH N H.Rigid-body attitude control[J].Control Systems IEEE, 2011, 31(3):30-51. doi: 10.1109/MCS.2011.940459 [15] WALLNER E M, WELL K H.Attitude control of a reentry vehicle with internal dynamics[J].Journal of Guidance, Control, and Dynamics, 2003, 26(6):846-854. doi: 10.2514/2.6928 [16] 席柯, 袁武, 阎超, 等.基于闭环控制的带翼导弹虚拟飞行数值模拟[J].航空学报, 2014, 35(3):634-642. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403004.htmXI K, YUAN W, YAN C, et al.Virtual flight numerical simulation of the basic finner projectile with closed loop[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):634-642(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201403004.htm [17] WANG W, YAN C, WANG S, et al.An efficient, robust and automatic overlapping grid assembly approach for partitioned multi-block structured grids[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 233(4):1217-1236. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112887351.html [18] ZHONG K, YAN C, CHEN S S, et al.Numerical study on the aerothermodynamics of different heatshield configurations for Mars entry capsules[J].Acta Astronautica, 2019, 157:189-198. doi: 10.1016/j.actaastro.2018.12.025 [19] 王吉阳, 杨学良.远程过程调用的设计与实现[J].计算机工程与设计, 1991(2):71-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ199102011.htmWANG J Y, YANG X L.The design and implementation of remote procedure call[J].Computer Engineering and Design, 1991(2):71-79(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SJSJ199102011.htm [20] BISWAS R, LU X Y, PANDA D K.Accelerating tensor flow with adaptive RDMA-based gRPC[C]//Proceedings of the 25th International Conference on High Performance Computing.Piscataway: IEEE Press, 2018: 2-11. [21] 刘君, 刘瑜, 陈泽栋.非结构变形网格和离散几何守恒律[J].航空学报, 2016, 37(8):2395-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608005.htmLIU J, LIU Y, CHEN Z D.Unstructured deforming mesh and discrete geometric conservation law[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2395-2407(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201608005.htm [22] 李跃军.飞行器强迫运动和自由飞的非定常流动数值模拟[D].北京: 北京航空航天大学, 2007: 56-63.LI Y J.Numerical simulation of unsteady flows around aircrafts experiencing forced motion and free flight[D].Beijing: Beihang University, 2007: 56-63(in Chinese). [23] 岳瑞华, 徐中英, 周涛.导弹控制原理[M].北京:北京航空航天大学出版社, 2016:17-41.YUE R H, XU Z Y, ZHOU T.Control principle of missiles[M].Beijing:Beihang University Press, 2016:17-41(in Chinese). [24] 吴森堂.飞行控制系统[M].2版.北京:北京航空航天大学出版社, 2013:180-191.WU S T.Flight control system[M].2nd ed.Beijing:Beihang University Press, 2013:180-191(in Chinese). [25] HALL L H, PARTHASARATHY V.Validation of an automated Chimera/6-DOF methodology for multiple moving body problems: AIAA-1998-0767[R].Reston: AIAA, 1998. [26] 刘雪松.X-51A高超声速飞行器三维重建及气动/隐身特性分析[D].南京: 南京航空航天大学, 2015: 9-18.LIU X S.Three-dimensional reconstruction and analysis aerodynamic and stealth characteristic of X-51A hypersonic vehicle[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 9-18(in Chinese).