-
摘要:
考虑不修、最小维修、换件维修和多中间维修水平,提出了一种基于粒子群优化(PSO)算法和多员维修的复杂系统选择性维修模型,将组件维修前状态、组件有效役龄和维修费用等因素引入不完全维修模型,更符合工程实际。提出了一种基于多员维修的系统组件维修分配算法,解决了如何将多维修任务分配给多维修人员,使得系统维修时间最小的问题,并将所提算法引入到PSO算法中,求解考虑多维修人员和不完全维修条件的复杂系统选择性维修模型。案例表明:所提模型和求解算法有效,能够为复杂系统提供切实有效的维修决策方案。
-
关键词:
- 复杂系统 /
- 选择性维修 /
- 多维修人员 /
- 不完全维修 /
- 粒子群优化(PSO)算法
Abstract:Considering no maintenance, minimal maintenance, replacement maintenance and multiple intermediate maintenance levels, a selective maintenance model for the complex system is proposed based on Particle Swarm Optimization (PSO) algorithm and multiple repairpersons. In the imperfect maintenance model, effective age, maintenance cost and pre-maintenance state of components are introduced, which is more in line with the engineering practice. A system components maintenance tasks assignment algorithm, to solve the problem of how to assign multiple maintenance tasks to multiple repairpersons in order to minimize the maintenance time, is also proposed. Furthermore, the proposed algorithm is introduced into the PSO algorithm to solve the selective maintenance model, which is given for complex system considering multiple repairpersons and imperfect maintenance. The results of case analysis show that the proposed model and the corresponding algorithm are effective, and can provide feasible maintenance decision-making schemes for complex system.
-
表 1 组件Eij维修水平赋值
Table 1. Maintenance level assignment for component Eij
维修水平 赋值 故障组件 不修 1 最小维修 2 ⋮ ⋮ 不完全修复性维修 lij(k) ⋮ ⋮ 不完全修复性维修 Lij(k)-1 更换 Lij(k) 正常组件 不修 1 不完全预防性维修 2 ⋮ ⋮ 不完全预防性维修 lij(k) ⋮ ⋮ 不完全预防性维修 Lij(k)-1 更换 Lij(k) 表 2 可变维修费用ckij, lij与维修水平lij(k)的对应关系
Table 2. Corresponding relationship between variable maintenance cost ckij, lij and maintenance level lij(k)
可变维修费用 赋值 故障组件 cij, 1k=0 1 cij, 2k=cijMR 2 ⋮ ⋮ ckij, lij lij(k) ⋮ ⋮ ckij, Lij=cijR Lij(k) 正常组件 cij, 1k=0 1 cij, 2k 2 ⋮ ⋮ ckij, lij lij(k) ⋮ ⋮ ckij, Lij=cijR Lij(k) 表 3 可变维修时间tkij, lij与维修水平lij(k)的对应关系
Table 3. Corresponding relationship between variable maintenance time tkij, lij and maintenance level lij(k)
可变维修时间 赋值 故障组件 tij, 1k=0 1 tij, 2k=tijMR 2 ⋮ ⋮ tkij, lij lij(k) ⋮ ⋮ tkij, Lij=tijR Lij(k) 正常组件 tij, 1k=0 1 tij, 2k 2 ⋮ ⋮ tkij, lij lij(k) ⋮ ⋮ tkij, Lij=tijR Lij(k) 子系统 组件 βij αij Yij(k) Aij(k) TijMR TijWR ΔtijW TijFR ΔtijF CijMR CijWR ΔcijW CijFR ΔcijF 子系统1 E11 1.5 15 1 15 3 5 0.25 1 0.25 6 12 2.00 12 1.0 E12 1.5 15 1 20 3 5 0.25 1 0.25 5 12 1.75 12 1.0 子系统2 E21 3.0 20 0 8 2 4 0.20 2 0.20 5 14 1.50 14 2.0 E22 3.0 20 1 15 2 4 0.20 2 0.20 6 15 1.60 15 1.5 表 5 系统选择性维修决策优化方案
Table 5. System selective maintenance decision optimization scheme
q 组件 维修水平lij(k) tijE tsys XijE Bija Sa R 1 E11 IM(5) 1.0 8.8 1 7.8 20.7 0.796 9 E12 WR(6) 5.0 1 0 E21 FR(7) 2.0 1 0 E22 IM(5) 0.8 1 12.9 组件 βij αij Aij(k)/h TijMR/d TijWR/d TijFR/d CijMR/万元 CijR/万元 E11 2.5 25 000 2 000 4.5 14 10 0.4 1.2 E12 2.5 25 000 3 800 4.5 14 10 0.4 1.2 E21 1.8 9 000 3 000 3.5 9 7 0.5 1.6 E22 1.8 9 000 5 000 3.5 9 7 0.5 1.6 E31 3.5 11 750 1 500 4.0 15 12 1.2 4.6 E32 3.5 11 750 2 000 4.0 15 12 1.2 4.6 E33 3.5 11 750 2 000 4.0 15 12 1.2 4.6 E34 3.5 11 750 3 800 4.0 15 12 1.2 4.6 E41 2.2 11 000 1 500 3.5 10 8 0.2 0.6 E42 2.2 11 000 2 500 3.5 10 8 0.2 0.6 E43 2.2 11 000 3 000 3.5 10 8 0.2 0.6 E44 2.2 11 000 4 000 3.5 10 8 0.2 0.6 E45 2.2 11 000 3 500 3.5 10 8 0.2 0.6 E46 2.2 11 000 1 500 3.5 10 8 0.2 0.6 E51 1.9 8 700 3 000 3.5 13 10 0.6 3.0 E52 1.9 8 700 2 000 3.5 13 10 0.6 3.0 E61 3.5 12 000 2 000 4.0 10 8 5.0 20.0 E62 3.5 12 000 3 500 4.0 10 8 5.0 20.0 E71 2.1 24 000 2 000 3.0 8 6 1.0 5.0 表 7 维修人员数量对SINS系统选择性维修决策的影响
Table 7. Influence of number of repairpersons on SINS selective maintenance decision
q 组件 维修水平lij(k) tijE Sa R 1 E11 DN(1) 0 40796 0.9074 E12 DN(1) 0 E21 IM(4) 3.5 E22 WR(6) 9.0 E31 DN(1) 0 E32 DN(1) 0 E33 DN(1) 0 E34 DN(1) 0 E41 DN(1) 0 E42 DN(1) 0 E43 DN(1) 0 E44 DN(1) 0 E45 DN(1) 0 E46 DN(1) 0 E51 DN(1) 0 E52 FR(6) 10.0 E61 DN(1) 0 E62 DN(1) 0 E71 IM(2) 1.6 2 E11 DN(1) 0 33068 0.9447 E12 DN(1) 0 E21 FR(6) 7.0 E22 WR(6) 9.0 E31 DN(1) 0 E32 DN(1) 0 E33 DN(1) 0 E34 DN(1) 0 E41 DN(1) 0 E42 DN(1) 0 E43 IM(4) 4.0 E44 DN(1) 0 E45 DN(1) 0 E46 DN(1) 0 E51 WR(6) 13.0 E52 FR(6) 10.0 E61 IM(2) 2.0 E62 DN(1) 0 E71 IM(4) 4.8 3 E11 DN(1) 0 23104 0.9528 E12 DN(1) 0 E21 FR(6) 9.0 E22 WR(6) 9.0 E31 DN(1) 0 E32 DN(1) 0 E33 DN(1) 0 E34 DN(1) 0 E41 IM(3) 2.5 E42 IM(2) 2.0 E43 IM(3) 2.5 E44 IM(5) 8.0 E45 IM(2) 2.0 E46 IM(2) 2.0 E51 WR(6) 13.0 E52 FR(6) 13.0 E61 IM(2) 2.0 E62 IM(2) 2.0 E71 WR(6) 8.0 -
[1] 史跃东, 徐一帆, 金家善.装备复杂系统多状态可靠性分析与评估技术[M].北京:科学出版社, 2017.SHI Y D, XU Y F, JIN J S.Multi-state reliability analysis and evaluation technology for complex equipment[M].Beijing:Science Press, 2017(in Chinese). [2] RICE W F, CASSADY C R, NACHLAS J A.Optimal maintenance plans under limited maintenance time[C]//Proceedings of the Seventh Industrial Engineering Research Conference, 1998: 1-3. [3] LIU Y, HUANG H Z.Optimal selective maintenance strategy for multi-state systems under imperfect maintenance[J].IEEE Transactions on Reliability, 2010, 59(2):356-367. [4] PANDEY M, ZUO M J, MOGHADDASS R.Selective maintenance for binary systems using age-based imperfect repair model[C]//Proceedings of 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering.Piscataway: IEEE Press, 2012: 385-389. [5] PANDEY M, ZUO M J, MOGHADDASS R, et al.Selective maintenance for binary systems under imperfect repair[J].Reliability Engineering and System Safety, 2013, 113:42-51. [6] 王少华, 张仕新, 李勇, 等.不完全维修条件下复杂系统的选择性维修决策方法研究[J].兵工学报, 2018, 39(6):1215-1224.WANG S H, ZHANG S X, LI Y, et al.Research on selective maintenance decision-making method of complex system considering imperfect maintenance[J].Acta Armamentarii, 2018, 39(6):1215-1224(in Chinese). [7] CAO W B, JIA X S, LIU Y, et al.Selective maintenance optimization for fuzzy multi-state systems[J].Journal of Intelligent & Fuzzy Systems, 2018, 34(1):105-121. [8] DJELLOUL I, KHATAB A, AGHEZZAF E H, et al.Optimal selective maintenance policy for series-parallel systems operating missions of random durations[C]//Proceeding of the 45th International Conference on Computers and Industrial Engineering, 2015: 1-8. [9] LIU Y, CHEN Y, JIANG T.On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations[J].European Journal of Operational Research, 2018, 268(1):113-127. [10] DAO C D, ZUO M J.Selective maintenance for multi-state series systems with s-dependent components[J].IEEE Transactions on Reliability, 2016, 65(2):525-539. [11] DIALLO C, KHATAB A, VENKATADRI U, et al.A joint selective maintenance and multiple repair-person assignment problem[C]//Proceedings of the 7th International Conference on Industrial Engineering and Systems Management, 2017: 317-322. [12] KHATAB A, DIALLO C, VENKATADRI U, et al.Optimization of the joint selective maintenance and repairperson assignment problem under imperfect maintenance[J].Computers & Industrial Engineering, 2018, 125:413-422. [13] DIALLO C, VENKATADRI U, AGHEZZAF E H, et al.Optimal joint selective imperfect maintenance and multiple repairpersons assignment strategy for complex multicomponent systems[J].International Journal of Production Research, 2019, 57(13):4098-4117. [14] 贾希胜.以可靠性为中心的维修决策模型[M].北京:国防工业出版社, 2007.JIA X S.The decision models for reliability centered maintenance[M].Beijing:National Defence Industry Press, 2007(in Chinese). [15] JIANG X H, DUAN F H, TIAN H, et al.Optimization of reliability centered predictive maintenance scheme for inertial navigation system[J].Reliability Engineering and System Safety, 2015, 140:208-217. 期刊类型引用(14)
1. 陈平平,陈家辉,王宣达,方毅,王锋. Dice系数前向预测的快速正交正则回溯匹配追踪算法. 电子与信息学报. 2024(04): 1488-1498 . 百度学术
2. 张峰,凌锦炜,刘叶楠,赵黎. 基于DFT-SAMP算法的MIMO-VLC系统压缩感知信道估计. 光子学报. 2023(04): 52-62 . 百度学术
3. 张家慧,王英志,李新格,沈亮. 一种改进型烟花重构算法及其在冲击波测试领域中的应用. 长春理工大学学报(自然科学版). 2022(02): 74-83 . 百度学术
4. 于立君,钟飞,王辉,原新. 基于纹理信息的图像重构实验项目改进算法设计. 实验技术与管理. 2021(05): 154-157+161 . 百度学术
5. 季策,王金芝,李伯群. 基于RSAMP算法的OFDM稀疏信道估计. 系统工程与电子技术. 2021(08): 2290-2296 . 百度学术
6. 刘洲洲,张倩昀,马新华,彭寒. 基于优化离散差分进化算法的压缩感知信号重构. 吉林大学学报(工学版). 2021(06): 2246-2252 . 百度学术
7. 陶亮,刘海鹏,王蒙,董士谦. 基于回溯正则化的前向搜索正交匹配追踪算法研究. 陕西理工大学学报(自然科学版). 2020(02): 37-43 . 百度学术
8. 丁倩,胡茂海. 一种改进的压缩感知重构算法. 红外技术. 2019(04): 364-369 . 百度学术
9. 丁佳静,武雪姣,李雪晴. 稀疏度自适应回溯追踪算法改进. 软件导刊. 2019(08): 59-62 . 百度学术
10. 江晓林,唐征宇,渠苏苏. 基于SWOMP分段回溯的压缩感知改进算法. 黑龙江科技大学学报. 2019(04): 501-505 . 百度学术
11. 肖沈阳,金志刚,苏毅珊,武晋. 压缩感知OFDM稀疏信道估计导频设计. 北京航空航天大学学报. 2018(07): 1447-1453 . 本站查看
12. 赵东波,李辉. 变步长SAMP算法在雷达目标识别中的应用. 控制工程. 2018(08): 1381-1385 . 百度学术
13. 李琪,张欣,张平康,张航. 阈值稀疏自适应匹配追踪图像重构算法. 小型微型计算机系统. 2018(11): 2528-2532 . 百度学术
14. 高宇轩,孙华燕,张廷华,都琳. 压缩编码孔径成像重构算法. 兵器装备工程学报. 2017(10): 191-196 . 百度学术
其他类型引用(8)
-