-
摘要:
半自动驾驶公交车辆编组是指半自动驾驶公交单元通过车联网技术连接在一起,实现车辆协同驾驶和车辆容量动态设计的车辆组织技术。以半自动驾驶公交车辆编组为出发点,建立编组车辆动态运行模型,分析编组车辆到离站时间、乘客上下车过程、车辆容量限制和车载乘客数量变化等。在此基础上,以车辆运营成本和乘客候车时间成本之和为目标函数,以车辆编组大小和发车时刻为决策变量,建立半自动驾驶公交车辆调度优化模型。提出改进的遗传算法高效求解模型。以杭州55路公交线路为实证案例,仿真结果表明:相比于传统人工驾驶公交的车辆调度,基于半自动驾驶公交的车辆调度能降低29.2%的车辆运营成本和18.2%的乘客候车时间成本,所得结果证实了所建模型优化半自动驾驶公交车辆调度的有效性。
Abstract:Semi-autonomous driving bus platooning refers to the vehicle organization technology that connects bus units together through vehicle communication technologies to realize coordinated driving of vehicles and dynamic design of vehicle capacity. Based on semi-autonomous driving us platooning, a dynamic bus operation model is first proposed to model bus arrival and departure time at stops, passenger dwelling process, bus capacity constraint and onboard passenger dynamics. On this basis, a semi-autonomous driving bus scheduling optimization model is proposed to jointly optimize platooning size and bus dispatching time with the objective of the sum of the optimizing operating cost and passenger waiting time cost. An improved genetic algorithm is proposed to solve the model efficiently. The model is validated using a real-world example of bus route 55, Hangzhou, China. Simulation results show that the proposed semi-autonomous driving bus scheduling can reduce bus operating cost by 29.2% and reduce passenger waiting time cost by 18.2%, when compared with conventional human-driven bus scheduling. The result verifies the efficiency of the proposed model in scheduling semi-autonomous driving bus.
-
表 1 杭州55路公交运营数据
Table 1. Operation data of route 55, Hangzhou
站点 tj/s tj标准差/s λj/(人次·h-1) 1 32.08 6.06 16 2 162.99 25.46 125 3 72.12 14.58 55 4 95.17 12.30 48 5 218.56 24.55 74 6 171.42 18.28 80 7 63.76 10.29 35 8 82.04 13.58 50 9 108.02 23.56 129 10 154.06 21.87 30 11 110.12 16.93 53 12 241.00 36.93 47 13 44.15 6.93 52 14 249.82 36.34 43 15 141.47 22.19 32 16 149.49 27.07 9 17 71.04 7.40 4 18 116.51 17.40 14 19 133.10 10.10 10 20 140.60 19.51 3 21 41.77 9.52 0 注:tj为车辆在站台j-1和站台j间的平均行驶时间,单位为s。 表 2 不同优化算法性能比较
Table 2. Performance comparison of different optimization algorithms
场景 算法 计算时间/min 目标函数值/元 场景1 遗传算法 0.7 14 702.6 滚动时间窗 3.2 15 462.1 滚动时间窗+动态规划 2.1 15 462.1 场景2 遗传算法 1.5 11 362.8 滚动时间窗 6.2 11 612.4 滚动时间窗+动态规划 4.7 11 612.4 表 3 成本分析
Table 3. Cost analysis
场景 车辆运营成本/元 乘客候车时间成本/元 总成本/元 场景1 6 048.0 8 654.6 14 702.6 场景2 4 280.0 7 082.8 11 362.8 -
[1] ZHANG W, JENELIUS E, BADIA H.Efficiency of semi-autonomous and fully autonomous bus services in trunk-and-branches networks[J].Journal of Advanced Transportation, 2019(PT.1):543-563. [2] SCHERR Y O, SAAVEDRA B A N, HEWITT M, et al.Service network design with mixed autonomous fleets[J].Transportation Research Part E:Logistics and Transportation Review, 2019, 124(C):40-55. [3] CHEN Z B, HE F, YIN Y F, et al.Optimal design of autonomous vehicle zones in transportation networks[J].Transportation Research Part B:Methodological, 2017, 99:44-61. [4] CHEN Z B, LI X P, ZHOU X S.Operational design for shuttle systems with modular vehicles under oversaturated traffic:Discrete modeling method[J].Transportation Research Part B:Methodological, 2019, 122:1-19. [5] LIU T, CEDER A A, RAU A.Public transit fleet size models of single-line autonomous modular system: No.19-01575[R].Washington, D.C.: TRB, 2019: 1-12. [6] 张思林, 袁振洲, 曹志超.考虑容量限制的多公交车型运行计划优化模型[J].交通运输系统工程与信息, 2016, 17(1):150-156.ZHANG S L, YUAN Z Z, CAO Z C.Optimization model of bus operation plan based on hybrid bus sizes with constraints on vehicle capacity[J].Journal of Transportation Systems Engineering and Information Technology, 2016, 17(1):150-156(in Chinese). [7] 胡郁葱, 陈栩, 罗嘉陵.多起终点多车型混载的定制公交线路规划模型[J].广西师范大学学报, 2018, 36(4):1-11.HU Y C, CHEN X, LUO J L.Network design model of customized bus in diversified operation of multi-origin-destination and multi-type vehicle mixed load[J].Journal of Guangxi Normal University, 2018, 36(4):1-11(in Chinese). [8] 代存杰, 李引珍, 马昌喜, 等.时间依赖需求下多车型快速公交发车频率优化[J].交通运输工程学报, 2017, 17(1):129-139.DAI C J, LI Y Z, MA C X, et al.Optimization of departure frequency for bus rapid transit with multi-type vehicles under time-dependent demand[J].Journal of Traffic and Transportation Engineering, 2017, 17(1):129-139(in Chinese). [9] 黄艳, 王正武, 李增杰, 等.多车型公交系统中公交车辆与发车间隔的协调优化[J].长沙理工大学学报(自然科学版), 2016, 13(3):37-41.HUANG Y, WANG Z W, LI Z J, et al.Coordinated optimization of bus and departure intervals in multi-vehicle bus system[J].Journal of Changsha University of Science and Technology(Natural Science), 2016, 13(3):37-41(in Chinese). [10] 赵淑芝, 王东, 刘华胜, 等.常规公交线路多车型配置优化模型[J].北京工业大学学报, 2017, 43(10):1529-1534.ZHAO S Z, WANG D, LIU H S, et al.Multi-vehicle-type configuration model of regular bus lines[J].Journal of Beijing University of Technology, 2017, 43(10):1529-1534(in Chinese). [11] DELGADO F, MUNOZ J C, GIESEN R.How much can holding and/or limiting boarding improve transit performance [J].Transportation Research Part B:Methodological, 2012, 46(9):1202-1217. [12] METAWA N, HASSAN M K, ELHOSENY M.Genetic algorithm based model for optimizing bank lending decisions[J].Expert Systems with Applications, 2017, 80(C):75-82. [13] 滕继涛, 张飞舟, 李跃鹏, 等.智能交通系统中车辆调度问题的遗传算法研究[J].北京航空航天大学学报, 2003, 29(1):13-16.TENG J T, ZHANG F Z, LI Y P, et al.Genetic algorithm for the scheduling of public traffic vehicles in ITS[J].Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1):13-16(in Chinese). [14] 张飞舟, 晏磊, 范跃祖, 等.智能交通系统中的运营车辆优化调度研究[J].北京航空航天大学学报, 2002, 28(6):707-710.ZHANG F Z, YAN L, FAN Y Z, et al.Optimizing dispatching of public traffic vehicles in intelligent transport systems[J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6):707-710(in Chinese). [15] FAN W, MACHEMEHL R B.Optimal transit route network design problem with variable transit demand:Genetic algorithm approach[J].Journal of Transportation Engineering, 2006, 132(1):40-51. [16] BIELLI M, CARAMIA M, CAROTENUTO P.Genetic algorithms in bus network optimization[J].Transportation Research Part C:Emerging Technologies, 2002, 10(1):19-34. [17] 巫威眺, 靳文舟, 魏明, 等.配合区间车的单线公交组合调度模型[J].华南理工大学学报, 2012, 40(11):147-154.WU W T, JIN W Z, WEI M, et al.Mixed scheduling model of single-line bus for zonal vehicles[J].Journal of South China University of Technology, 2012, 40(11):147-154(in Chinese). [18] LU G, NIE Y M, LIU X, et al.Trajectory-based traffic management inside an autonomous vehicle zone[J].Transportation Research Part B:Methodological, 2019, 120:76-98.