留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑冲击韧性的退化-冲击相依竞争失效建模

孙富强 李艳宏 程圆圆

孙富强, 李艳宏, 程圆圆等 . 考虑冲击韧性的退化-冲击相依竞争失效建模[J]. 北京航空航天大学学报, 2020, 46(12): 2195-2202. doi: 10.13700/j.bh.1001-5965.2019.0628
引用本文: 孙富强, 李艳宏, 程圆圆等 . 考虑冲击韧性的退化-冲击相依竞争失效建模[J]. 北京航空航天大学学报, 2020, 46(12): 2195-2202. doi: 10.13700/j.bh.1001-5965.2019.0628
SUN Fuqiang, LI Yanhong, CHENG Yuanyuanet al. Competing failure modeling for degradation-shock dependence systems with shock toughness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2195-2202. doi: 10.13700/j.bh.1001-5965.2019.0628(in Chinese)
Citation: SUN Fuqiang, LI Yanhong, CHENG Yuanyuanet al. Competing failure modeling for degradation-shock dependence systems with shock toughness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2195-2202. doi: 10.13700/j.bh.1001-5965.2019.0628(in Chinese)

考虑冲击韧性的退化-冲击相依竞争失效建模

doi: 10.13700/j.bh.1001-5965.2019.0628
基金项目: 

国家自然科学基金 61603018

国家重点研发计划 2018YFB0104504

详细信息
    作者简介:

    孙富强  男,博士,副研究员。主要研究方向:多退化过程与随机冲击竞争失效系统建模、多元相依加速退化模型等

    李艳宏  女,硕士研究生。主要研究方向:加速试验理论与应用、质保政策优化等

    程圆圆  女,硕士研究生。主要研究方向:竞争失效建模等

    通讯作者:

    孙富强, E-mail: sunfuqiang@buaa.edu.cn

  • 中图分类号: V57;TB114.3

Competing failure modeling for degradation-shock dependence systems with shock toughness

Funds: 

National Natural Science Foundation of China 61603018

National Key R & D Program of China 2018YFB0104504

More Information
  • 摘要:

    复杂系统的失效通常是退化失效与随机冲击导致的突发失效之间耦合竞争的结果。针对某些具有冲击韧性的系统,提出了一种基于非线性Wiener过程的退化-冲击相依竞争失效模型与可靠性评估方法。首先,采用m-δ冲击模型考虑了系统抵抗冲击载荷的能力,即只有随机冲击频率高于一定水平才会导致突发失效,其余情况只会对退化过程产生影响。然后,在此基础上,通过修正非线性Wiener过程模型来考虑随机冲击对系统退化在退化增量和退化速率两方面的影响。最后,采用某空间用存储芯片案例对所提方法进行验证,并开展了参数敏感性分析,结果表明了所提方法的合理性与有效性。

     

  • 图 1  考虑冲击韧性的退化-冲击相依竞争失效机制

    Figure 1.  Degradation-shock dependence competing failure mechanism considering shock toughness

    图 2  竞争失效系统的可靠度曲线

    Figure 2.  Reliability curves of competing failure system

    图 3  参数d的敏感性分析

    Figure 3.  Sensitivity analysis of parameter d

    图 4  参数m的敏感性分析

    Figure 4.  Sensitivity analysis of parameter m

    表  1  竞争失效系统可靠性分析的参数设定

    Table  1.   Parameter setting for reliability analysis of competing failure system

    参数 数值 来源
    λ0 1.71 Bentoutou[24]
    λ1 5.3×10-5 Bentoutou[24]
    μ0 5.44×10-8 假设
    σB 0.004 假设
    θ 1.8 假设
    r 0.5 假设
    μA 0.04 假设
    σA 0.06 假设
    d 3.00 假设
    δ 500 假设
    下载: 导出CSV
  • [1] 蔡忠义, 项华春, 王攀, 等.竞争失效下多元退化建模的导弹贮存寿命评估[J].系统工程与电子技术, 2018, 40(5):1183-1188. http://www.cnki.com.cn/Article/CJFDTotal-XTYD201805034.htm

    CAI Z Y, XIANG H C, WANG P, et al.Missile storage lifetime assessment of multivariate degradation modeling under competitive failure[J].Systems Engineering and Electronics, 2018, 40(5):1183-1188(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XTYD201805034.htm
    [2] 王浩伟, 奚文骏, 冯玉光.基于退化失效与突发失效竞争的导弹剩余寿命预测[J].航空学报, 2016, 37(4):1240-1248. http://d.wanfangdata.com.cn/Periodical/hkxb201604016

    WANG H W, XI W J, FENG Y G.Remaining life prediction based on competing risks of degeneration failure and traumatic failure for missiles[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201604016
    [3] WANG Y, PHAM H.Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[J].IEEE Transactions on Reliability, 2012, 61(1):13-22. http://ieeexplore.ieee.org/document/6045314/
    [4] LIU Z, MA X, SHEN L, et al.Degradation shock based reliability models for fault tolerant systems[J].Quality and Reliability Engineering International, 2016, 32(3):949-955. doi: 10.1002/qre.1805
    [5] AN Z, SUN D.Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level[J].Reliability Engineering & System Safety, 2017, 157:129-138. http://www.sciencedirect.com/science/article/pii/s0951832016304343
    [6] CHA J H, FINKELSTEIN M.Point processes for reliability analysis:Shocks and repairable systems[M].Berlin:Springer, 2018.
    [7] FINKELSTEIN M, CHA J H.Stochastic modeling for reliability:Shocks, burn-in and heterogeneous populations[M].Berlin:Springer, 2013:9-17.
    [8] TANG D, YU J, CHEN X, et al.An optimal condition based maintenance policy for a degrading system subject to the competing risks of soft and hard failure[J].Computers & Industrial Engineering, 2015, 83:100-110. http://dl.acm.org/citation.cfm?id=2780713.2781309
    [9] HAO P, FENG Q, COIT D W.Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[J].IIE Transactions, 2010, 43(1):12-22. doi: 10.1080/0740817X.2010.491502
    [10] RAFIEE K, FENG Q M, COIT D W.Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model[J].IEEE Transactions on Reliability, 2015, 64(4):1164-1174. http://ieeexplore.ieee.org/document/7214332/
    [11] SONG S, COIT D W, FENG Q.Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects[J].IIE Transactions, 2016, 48(8):720-735. doi: 10.1080/0740817x.2016.1140922
    [12] RAFIEE K, FENG Q, COIT D W.Reliability analysis and condition-based maintenance for failure processes with degradation-dependent hard failure threshold[J].Quality and Reliability Engineering International, 2017, 33(7):1351-1366. doi: 10.1002/qre.2109/abstract
    [13] ZHANG Z, SI X, HU C, et al.Degradation data analysis and remaining useful life estimation:A review on Wiener-process-based methods[J].European Journal of Operational Research, 2018, 271(3):775-796. https://www.sciencedirect.com/science/article/pii/S0377221718301486
    [14] KEEDY E, FENG Q.Reliability analysis and customized preventive maintenance policies for stents with stochastic dependent competing risk processes[J].IEEE Transactions on Reliability, 2013, 62(4):887-897. http://ieeexplore.ieee.org/document/6632945/
    [15] LIU B, XIE M, XU Z, et al.An imperfect maintenance policy for mission-oriented systems subject to degradation and external shocks[J].Computers & Industrial Engineering, 2016, 102:21-32. http://www.sciencedirect.com/science/article/pii/S0360835216303771
    [16] GUO C, WANG W, GUO B, et al.Maintenance optimization for systems with dependent competing risks using a copula function[J].Eksploatacja I Niezawodnosc-Maintenance and Reliability, 2013, 15(1):9-17. http://www.researchgate.net/publication/286015306_Maintenance_optimization_for_systems_with_dependent_competing_risks_using_a_copula_function
    [17] SUN F, LIU L, LI X, et al.Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion[J].Sensors, 2016, 16(8):1242. http://www.chemeurope.com/en/publications/978547/
    [18] RAFIEE K, FENG Q M, COIT D W.Reliability modeling for dependent competing failure processes with changing degradation rate[J].IIE Transactions, 2014, 46(5):483-496. doi: 10.1080/0740817X.2013.812270
    [19] HAO S, YANG J.Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels[J].Computers & Industrial Engineering, 2018, 118:340-351. http://www.sciencedirect.com/science/article/pii/S0360835218300871
    [20] NAKAGAWA T.Shock and damage models in reliability theory[M].Berlin:Springer, 2007.
    [21] FAN M, ZENG Z, ZIO E, et al.Modeling dependent competing failure processes with degradation-shock dependence[J].Reliability Engineering & System Safety, 2017, 165:422-430. http://www.sciencedirect.com/science/article/pii/S0951832016301740
    [22] JIANG L, FENG Q M, COIT D W.Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[J].IEEE Transactions on Reliability, 2012, 61(4):932-948. http://ieeexplore.ieee.org/document/6327634
    [23] SI X S, WANG W, HU C H, et al.Remaining useful life estimation based on a nonlinear diffusion degradation process[J].IEEE Transactions on Reliability, 2012, 61(1):50-67. http://ieeexplore.ieee.org/document/6135842/
    [24] BENTOUTOU Y.A real time EDAC system for applications onboard earth observation small satellites[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):648-657. http://ieeexplore.ieee.org/document/6129661
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  925
  • HTML全文浏览量:  123
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 录用日期:  2020-02-03
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答