Competing failure modeling for degradation-shock dependence systems with shock toughness
-
摘要:
复杂系统的失效通常是退化失效与随机冲击导致的突发失效之间耦合竞争的结果。针对某些具有冲击韧性的系统,提出了一种基于非线性Wiener过程的退化-冲击相依竞争失效模型与可靠性评估方法。首先,采用
m-δ 冲击模型考虑了系统抵抗冲击载荷的能力,即只有随机冲击频率高于一定水平才会导致突发失效,其余情况只会对退化过程产生影响。然后,在此基础上,通过修正非线性Wiener过程模型来考虑随机冲击对系统退化在退化增量和退化速率两方面的影响。最后,采用某空间用存储芯片案例对所提方法进行验证,并开展了参数敏感性分析,结果表明了所提方法的合理性与有效性。Abstract:Failure of complex systems is usually the result of dependent competing between degradation failure and sudden failure caused by some random shocks. In this paper, a degradation-shock dependent competing failure model and reliability evaluation method based on nonlinear Wiener process are proposed for some systems with shock toughness. The
m-δ shock model is used to consider the ability of the system to resist the shock load, that is, only when the random shock frequency is higher than a certain level, a sudden failure will occur, and in other cases, only the degradation process will be affected. On this basis, the nonlinear Wiener process model is modified to consider the effect of random shock on the degradation of the system in both the degradation increment and the degradation rate. Finally, a space memory unit case is used to verify the proposed method, and the parameter sensitivity analysis is carried out.-
Key words:
- shock toughness /
- degradation /
- random shock /
- dependence /
- competing failure /
- nonlinear Wiener process
-
-
[1] 蔡忠义, 项华春, 王攀, 等.竞争失效下多元退化建模的导弹贮存寿命评估[J].系统工程与电子技术, 2018, 40(5):1183-1188. http://www.cnki.com.cn/Article/CJFDTotal-XTYD201805034.htmCAI Z Y, XIANG H C, WANG P, et al.Missile storage lifetime assessment of multivariate degradation modeling under competitive failure[J].Systems Engineering and Electronics, 2018, 40(5):1183-1188(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XTYD201805034.htm [2] 王浩伟, 奚文骏, 冯玉光.基于退化失效与突发失效竞争的导弹剩余寿命预测[J].航空学报, 2016, 37(4):1240-1248. http://d.wanfangdata.com.cn/Periodical/hkxb201604016WANG H W, XI W J, FENG Y G.Remaining life prediction based on competing risks of degeneration failure and traumatic failure for missiles[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1240-1248(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkxb201604016 [3] WANG Y, PHAM H.Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas[J].IEEE Transactions on Reliability, 2012, 61(1):13-22. http://ieeexplore.ieee.org/document/6045314/ [4] LIU Z, MA X, SHEN L, et al.Degradation shock based reliability models for fault tolerant systems[J].Quality and Reliability Engineering International, 2016, 32(3):949-955. doi: 10.1002/qre.1805 [5] AN Z, SUN D.Reliability modeling for systems subject to multiple dependent competing failure processes with shock loads above a certain level[J].Reliability Engineering & System Safety, 2017, 157:129-138. http://www.sciencedirect.com/science/article/pii/s0951832016304343 [6] CHA J H, FINKELSTEIN M.Point processes for reliability analysis:Shocks and repairable systems[M].Berlin:Springer, 2018. [7] FINKELSTEIN M, CHA J H.Stochastic modeling for reliability:Shocks, burn-in and heterogeneous populations[M].Berlin:Springer, 2013:9-17. [8] TANG D, YU J, CHEN X, et al.An optimal condition based maintenance policy for a degrading system subject to the competing risks of soft and hard failure[J].Computers & Industrial Engineering, 2015, 83:100-110. http://dl.acm.org/citation.cfm?id=2780713.2781309 [9] HAO P, FENG Q, COIT D W.Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[J].IIE Transactions, 2010, 43(1):12-22. doi: 10.1080/0740817X.2010.491502 [10] RAFIEE K, FENG Q M, COIT D W.Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model[J].IEEE Transactions on Reliability, 2015, 64(4):1164-1174. http://ieeexplore.ieee.org/document/7214332/ [11] SONG S, COIT D W, FENG Q.Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects[J].IIE Transactions, 2016, 48(8):720-735. doi: 10.1080/0740817x.2016.1140922 [12] RAFIEE K, FENG Q, COIT D W.Reliability analysis and condition-based maintenance for failure processes with degradation-dependent hard failure threshold[J].Quality and Reliability Engineering International, 2017, 33(7):1351-1366. doi: 10.1002/qre.2109/abstract [13] ZHANG Z, SI X, HU C, et al.Degradation data analysis and remaining useful life estimation:A review on Wiener-process-based methods[J].European Journal of Operational Research, 2018, 271(3):775-796. https://www.sciencedirect.com/science/article/pii/S0377221718301486 [14] KEEDY E, FENG Q.Reliability analysis and customized preventive maintenance policies for stents with stochastic dependent competing risk processes[J].IEEE Transactions on Reliability, 2013, 62(4):887-897. http://ieeexplore.ieee.org/document/6632945/ [15] LIU B, XIE M, XU Z, et al.An imperfect maintenance policy for mission-oriented systems subject to degradation and external shocks[J].Computers & Industrial Engineering, 2016, 102:21-32. http://www.sciencedirect.com/science/article/pii/S0360835216303771 [16] GUO C, WANG W, GUO B, et al.Maintenance optimization for systems with dependent competing risks using a copula function[J].Eksploatacja I Niezawodnosc-Maintenance and Reliability, 2013, 15(1):9-17. http://www.researchgate.net/publication/286015306_Maintenance_optimization_for_systems_with_dependent_competing_risks_using_a_copula_function [17] SUN F, LIU L, LI X, et al.Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion[J].Sensors, 2016, 16(8):1242. http://www.chemeurope.com/en/publications/978547/ [18] RAFIEE K, FENG Q M, COIT D W.Reliability modeling for dependent competing failure processes with changing degradation rate[J].IIE Transactions, 2014, 46(5):483-496. doi: 10.1080/0740817X.2013.812270 [19] HAO S, YANG J.Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels[J].Computers & Industrial Engineering, 2018, 118:340-351. http://www.sciencedirect.com/science/article/pii/S0360835218300871 [20] NAKAGAWA T.Shock and damage models in reliability theory[M].Berlin:Springer, 2007. [21] FAN M, ZENG Z, ZIO E, et al.Modeling dependent competing failure processes with degradation-shock dependence[J].Reliability Engineering & System Safety, 2017, 165:422-430. http://www.sciencedirect.com/science/article/pii/S0951832016301740 [22] JIANG L, FENG Q M, COIT D W.Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds[J].IEEE Transactions on Reliability, 2012, 61(4):932-948. http://ieeexplore.ieee.org/document/6327634 [23] SI X S, WANG W, HU C H, et al.Remaining useful life estimation based on a nonlinear diffusion degradation process[J].IEEE Transactions on Reliability, 2012, 61(1):50-67. http://ieeexplore.ieee.org/document/6135842/ [24] BENTOUTOU Y.A real time EDAC system for applications onboard earth observation small satellites[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):648-657. http://ieeexplore.ieee.org/document/6129661