留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分体四轮式空气循环制冷系统仿真及试验研究

杨涵 张兴娟 王超 杨春信

杨涵, 张兴娟, 王超, 等 . 分体四轮式空气循环制冷系统仿真及试验研究[J]. 北京航空航天大学学报, 2020, 46(12): 2203-2210. doi: 10.13700/j.bh.1001-5965.2019.0633
引用本文: 杨涵, 张兴娟, 王超, 等 . 分体四轮式空气循环制冷系统仿真及试验研究[J]. 北京航空航天大学学报, 2020, 46(12): 2203-2210. doi: 10.13700/j.bh.1001-5965.2019.0633
YANG Han, ZHANG Xingjuan, WANG Chao, et al. Simulation and test study on split four-wheel air cycle refrigeration system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2203-2210. doi: 10.13700/j.bh.1001-5965.2019.0633(in Chinese)
Citation: YANG Han, ZHANG Xingjuan, WANG Chao, et al. Simulation and test study on split four-wheel air cycle refrigeration system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2203-2210. doi: 10.13700/j.bh.1001-5965.2019.0633(in Chinese)

分体四轮式空气循环制冷系统仿真及试验研究

doi: 10.13700/j.bh.1001-5965.2019.0633
基金项目: 

国家“973”计划 2012CB72106

详细信息
    作者简介:

    杨涵  女, 博士。主要研究方向:飞行器环控

    杨春信  男, 博士, 教授, 博士生导师。主要研究方向:人机与环境工程

    通讯作者:

    杨春信, E-mail: yangchunxin@sina.com

  • 中图分类号: V228.3;TB61+4

Simulation and test study on split four-wheel air cycle refrigeration system

Funds: 

National Basic Research Program of China 2012CB72106

More Information
  • 摘要:

    为了提高飞机座舱环境控制系统性能,同时降低设计和制造难度,提出了分体四轮式空气循环制冷系统。所提系统采用2个独立的两轮式涡轮冷却器代替一体化四轮式涡轮冷却器。基于焓参数法分析了分体四轮式及四轮式空气循环制冷系统的热力性能,结果显示2个系统热力性能一致。基于实验室现有部件搭建了分体四轮式空气循环制冷系统原理样机,摸底测试表明,系统最大制冷量可达12.0 kW,制冷量理论值与试验值的误差分布在±15%以内,验证了焓参数法的有效性。原理样机的性能系数分布在0.21~1.15之间。所提系统可为国产大飞机环境控制系统的研制提供良好的技术储备。

     

  • 图 1  四轮式ACS流程及热力过程

    1→1a表示初级散热器(等压放热); 1a→2表示压气机(等熵压缩); 2→2a表示次级散热器(等压放热); 2a→2b表示回热器热边(等压放热); 2b→2c表示冷凝器热边(等压放热); 2c→2d表示水分离器; 2d→2e表示回热器冷边(等压吸热); 2e→3表示一级涡轮(等熵膨胀); 3→3a表示冷凝器冷边(等压吸热); 3a→4表示二级涡轮(等熵膨胀)。

    Figure 1.  Schematic diagram of four-wheel ACS flow and thermal process

    图 2  分体四轮式ACS流程及热力过程

    1→1a表示初级散热器(等压放热); 1a→2表示压气机(等熵压缩); 2→2a表示次级散热器(等压放热); 2a→2b表示回热器热边(等压放热); 2b→2c表示冷凝器热边(等压放热); 2c→2d表示水分离器; 2d→2e表示回热器冷边(等压吸热); 2e→3表示一级涡轮(等熵膨胀); 3→3a表示冷凝器冷边(等压吸热); 3a→4表示二级涡轮(等熵膨胀)。

    Figure 2.  Schematic diagram of split four-wheel ACS flow and thermal process

    图 3  焓参数法计算流程

    Figure 3.  Calculation flow chart of enthalpy parameter method

    图 4  分体四轮式ACS与四轮式ACS仿真结果对比

    Figure 4.  Comparison of simulation results of split four-wheel ACS and four-wheel ACS

    图 5  分体四轮式ACS实物图

    Figure 5.  Picture of split four-wheel ACS

    图 6  分体四轮式ACS测试平台流程

    Figure 6.  Flow chart of split four-wheel ACS test bench

    图 7  分体四轮式ACS制冷量计算与试验结果对比

    Figure 7.  Comparison of refrigeration capacity calculation and test results of split four-wheel ACS

    图 8  分体四轮式ACS的COP随θ1的变化

    Figure 8.  Variation of COP with θ1of split four-wheel ACS

    表  1  飞行环境参数

    Table  1.   Flight environmental parameters

    环境参数 数值
    飞行高度/km 0
    马赫数 0.19
    环境温度/℃ 40
    环境压力/kPa 101.325
    环境湿度/(g·kg-1) 19
    引气温度/℃ 180
    引气压力/kPa 300
    引气湿度/(g·kg-1) 19
    座舱压力/kPa 101.325
    下载: 导出CSV

    表  2  关键部件性能匹配结果

    Table  2.   Matching results of key components

    关键部件性能 分体四轮式ACS系统 四轮式ACS系统
    初级散热器效率 0.8 0.8
    压气机效率 0.72 0.72
    压气机压比 1.36 1.36
    次级散热器效率 0.77 0.77
    回热器效率 0.51 0.51
    冷凝器效率 0.35 0.35
    高压水分离器效率 0.8 0.8
    一级涡轮效率 0.8 0.8
    一级涡轮膨胀比 2.10 2.13
    二级涡轮效率 0.77 0.77
    二级涡轮膨胀比 1.79 1.77
    风扇效率 0.25 0.25
    风扇压比 1.05 1.05
    系统冷热路流比 1.5 1.5
    下载: 导出CSV

    表  3  测量仪器性能

    Table  3.   Performance of measurement instruments

    传感器 产品型号 测量范围 测量精度/% 测量参数
    质量流量计 艾默生CMF200M 0~3 000 kg/h 0.35 发动机引气流量
    喷嘴流量计 西安中星博纳BN-BP-DN100 0~1 500 kg/h 1.0 冲压空气补充流量
    温度传感器 昆仑海岸JWB 多种量程 0.5 测量各状态点温度
    压力传感器 昆仑海岸JYB-KO-M 多种量程 0.5 测量各状态点压力
    湿度仪 维萨拉HMT-334/罗卓尼克E-M-HC2 0~100%RH 1.0/0.5 各点相对湿度
    下载: 导出CSV

    表  4  分体四轮式ACS测试工况

    Table  4.   Test conditions of split four-wheel ACS

    参数 数值
    引气压力/kPa 251.8~708.1
    引气温度/℃ 42.0~184.7
    引气含湿量/(g·kg-1) 0.31~6.07
    引气流量/(kg·h-1) 201.3~654.8
    冲压空气流量/(kg·h-1) 341.5~906.6
    下载: 导出CSV
  • [1] U.S.Department of Denfense.The US department non-standard atmospheres: MIL-STD-210[S].Washington, D.C.: U.S.Department of Denfense, 1953.
    [2] LINNETT K, CRABTREE R.What's next in commercial aircraft environmental control systems [C]//23rd International Conference on Environmental Systems.Warrendale: SAE International, 1993: 932057.
    [3] HERZOG J.Electrification of the environmental control system[C]//25th International Congress of the Aeronautical Sciences, 2006: 1-4.
    [4] HUNT E H, REID H, SPACE D R, et al.Commercial airliner environmental control system(engineering aspects of cabin air quality)[C]//The Aerospace Medical Association Annual Meeting, 1995: 1-8.
    [5] SLINGERLAND R, ZANDSTRA S.Bleed air versus electric power off-takes from a turbofan gas turbine over the flight cycle[C]//7th AIAA Aviation Technology, Integration and Operations Conference.Reston: AIAA, 2007: 18-20.
    [6] BRASSEUR A, LEPPERT W, PRADILLE A.Inside the 747-8 new environmental control system[J].Aeromagazine, 2012, 1:19-25.
    [7] ZHOU W.Cabin environment and air quality in civil transport aircraft[D].Swindon: Cranfield University, 2012.
    [8] 顾仁碗, 焦毅.浅析民用飞机空调制冷技术[J].科技与创新, 2017(11):23-24. http://www.cqvip.com/QK/90452A/201711/7000220831.html

    GU R W, JIAO Y.Analysis of civil air conditioning refrigeration technology[J].Technology and Innovation, 2017(11):23-24(in Chinese). http://www.cqvip.com/QK/90452A/201711/7000220831.html
    [9] 寿荣中, 何慧珊.飞行器环境控制[M].北京:北京航空航天大学出版社, 2006:2-3.

    SHOU R Z, HE H S.Aircraft environmental control[M].Beijing:Beihang University Press, 2006:2-3(in Chinese).
    [10] 陈元先.旅科机环境控制系统的发展[J].航空学报, 1999, 20(S1):7-9.

    CHEN Y X.Evolution of the environmental control systems for commercial aircraft[J].Acta Aeronautica et Astronautica Sinica, 1999, 20(S1):7-9(in Chinese).
    [11] 张兴娟, 杨春信, 袁修干.大飞机座舱制冷系统发展概述[C]//中国航空学会2007年学术年会.北京: 中国航空学会, 2007: 1-5.

    ZHANG X J, YANG C X, YUAN X G.Development of cabin refrigeration system for large aircraft[C]//2007 Academic Annual Meeting of Chinese Society of Aeronautics and Astronautics.Beijing: Chinese Society of Aeronautics and Astronautics, 2007: 1-5(in Chinese).
    [12] HUBER P, SCHUSTER K, TOWNSEND R.Controlling nuisance moisture in commercial airplanes[EB/OL].(1999-01-05)[2019-10-17].http://www.boeing.com/commercial/aeromagazine/aero_05/textonly/m01txt.html.
    [13] 李国辉.客机墙体水分积聚规律的探究[D].大连: 大连理工大学, 2017.

    LI G H.Moisture accumulation in commercial aircraft walls[D].Dalian: Dalian University of Technology, 2017(in Chinese).
    [14] WARNER J L.Environmental control system condensing cycle: US Patent: No.5086622[P].1992-02-17.
    [15] DEFRANCESCO G L.Condensing cycle air conditioning system[C]//23rd International Conference on Environmental Systems.Warrendale: SAE International, 1993: 932056.
    [16] MAHER J F, CONN E, MERRITT B J, et al.Four wheel air cycle machine: US Patent: No.5309735[P].1994-05-10.
    [17] 刘建庆, 胡文超.环控系统发展取得新成果[J].国防科技工业, 2002(12):49.

    LIU J Q, HU W C.New achievements in the development of environmental control system[J].Denfence Science & Technology Industry, 2002(12):49(in Chinese).
    [18] 党晓民, 成杰, 林丽.我国大型飞机环境控制系统研制展望[J].航空工程进展, 2010, 1(1):21-24. http://d.wanfangdata.com.cn/Periodical/hkgcjz201001006

    DANG X M, CHENG J, LIN L.Development of the environmental control system of Chinese large aircraft[J].Advances in Aeronautical Science and Engineering, 2010, 1(1):21-24(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkgcjz201001006
    [19] 胡芳.四轮升压式高压除水制冷系统的改进分析[J].江苏航空, 2012(S1):42-45. http://www.cnki.com.cn/Article/CJFDTotal-HKJS2012S1012.htm

    HU F.Improvement of four-wheel bootstrap air cycle system with high-pressure water speration[J].Jiangsu Aviation, 2012(S1):42-45(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKJS2012S1012.htm
    [20] Boeing. 787 dreamliner airplane systems ebook[M/CD].[2019-10-17].
    [21] 王安良, 杨春信, 胡创利.飞机环境控制系统的焓参数匹配方法[J].工程热物理学报, 2003, 24(2):325-327. http://d.wanfangdata.com.cn/Conference/3501169

    WANG A L, YANG C X, HU C L.A methodology for macthing enthalpy parameters of environmental control system[J].Journal of Engineering Thermophysics, 2003, 24(2):325-327(in Chinese). http://d.wanfangdata.com.cn/Conference/3501169
    [22] 张兴娟, 李峰, 杨春信.三轮升压式高压除水系统焓参数法性能计算[J].航空动力学报, 2010, 25(9):1938-1941. http://d.wanfangdata.com.cn/Periodical/hkdlxb201009003

    ZHANG X J, LI F, YANG C X.Calculation method for matching enthalpy parameter of three-wheel bootstrap high-pressure water-separated system[J].Journal of Aerospace Power, 2010, 25(9):1938-1941(in Chinese). http://d.wanfangdata.com.cn/Periodical/hkdlxb201009003
    [23] 张兴娟, 李峰, 杨春信.大飞机四轮升压制冷系统焓参数法匹配计算[J].北京航空航天大学学报, 2010, 36(9):1909-1912. https://bhxb.buaa.edu.cn/CN/Y2010/V36/I9/1009

    ZHANG X J, LI F, YANG C X.Calculatin method for matching enthalpy parameter of four-wheel refrigeration system for civil aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9):1909-1912(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2010/V36/I9/1009
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  786
  • HTML全文浏览量:  124
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 录用日期:  2020-03-15
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答