-
摘要:
针对无人机(UAV)编队的协同多任务分配问题(CMTAP),考虑双机协同探测、双机协同攻击的情况,结合时间约束、时序约束、时间间隔约束、载机弹药约束、任务能力约束等约束条件,扩展了协同多任务分配模型;将差分进化(DE)算法、郭涛(GT)算法、离散粒子群优化(DPSO)算法、模拟退火(SA)算法进行融合,提出了DE-DPSO-GT-SA算法,用以求解协同多任务分配问题。通过与多种算法进行比较,仿真试验结果表明,所提算法具有较好的收敛性能。
-
关键词:
- 协同任务分配 /
- 协同作战 /
- 离散粒子群优化(DPSO) /
- 差分进化(DE) /
- 无人机(UAV)编队
Abstract:Aimed at Cooperative Multi-Task Assignment Problem (CMTAP) of Unmanned Aerial Vehicle (UAV) formation, considering the situation of cooperative detection and attack of two aircraft, combining the constraint conditions of time constraint, time sequence constraint, time interval constraint, ammunition constraint and task capability constraint, the model of cooperative multi-task assignment is extended, and a mixed Differential Evolution (DE) and Guo Tao (GT) algorithm, Discrete Particle Swarm Optimization (DPSO) algorithm and Simulated Annealing(SA) algorithm are fused to propose a DE-DPSO-GT-SA algorithm to solve the cooperative multi-task assignment problem. The performance of DE-DPSO-GT-SA algorithm and that of other algorithms are compared. Simulation results show that DE-DPSO-GT-SA algorithm has better convergence performance than other algorithms.
-
表 1 飞机作战能力
Table 1. Combat capabilities of aircraft
飞机编号 起始位置/m 航程/m 导弹数目 速度/(m·s-1) 任务能力 探测 攻击 评估 1 (1 000, 500) 100 000 4 200 √ √ √ 2 (500, 1 000) 100 000 4 200 √ √ 3 (1 000, 1 000) 100 000 2 300 √ √ √ 4 (0, 1 000) 100 000 4 300 √ √ 5 (1 000, 0) 100 000 8 300 √ √ 6 (0, 0) 100 000 4 200 √ √ 表 2 任务目标点信息
Table 2. Information of task target points
目标编号 目标位置/m 执行任务所需飞机架数 探测 攻击 评估 1 (10 000, 10 000) 1 1 1 2 (20 000, 20 000) 2 1 1 3 (14 000, 6 000) 0 1 1 4 (8 000, 16 000) 0 1 1 5 (20 000, 10 000) 1 1 0 6 (10 000, 20 000) 1 2 1 7 (15 000, 15 000) 2 2 1 8 (8 000, 5 000) 0 1 0 9 (1 000, 3 000) 1 0 0 10 (5 000, 8 000) 1 1 0 表 3 导弹和航程使用情况
Table 3. Missile and distance of aircraft
飞机编号 携带的导弹数目 已用导弹数目 航程/m 飞行距离/m 1 4 3 100 000 51 628 2 4 1 100 000 46 126 3 2 1 100 000 80 654 4 4 2 100 000 61 454 5 8 1 100 000 71 654 6 4 1 100 000 38 302 表 4 5种算法综合比较
Table 4. Comprehensive comparison of five algorithms
算法 适应度值 平均运行时间/s 最优值 最劣值 平均值 DPSO 0.067 8 0.057 0 0.060 2 91.834 0 DE 0.075 3 0.062 9 0.067 2 99.549 4 DPSO-GT 0.078 1 0.062 5 0.068 5 222.813 6 DPSO-GT-SA 0.079 4 0.063 4 0.070 6 355.067 3 DE-DPSO-GT-SA 0.080 2 0.065 2 0.071 8 359.244 7 -
[1] ALIGHANBARI M.Task assignment algorithms for teams of UAVs in dynamic environments[D].Cambridge: Massachusetts Institute of Technology, 2014: 25-30. [2] SHI Z, YANG B, LIU H Y.Modeling and simulation of UCAV swarm cooperative task assignment[C]//2010 Third International Conference on Information and Computing(ICIC).Piscataway: IEEE Press, 2010: 308-311. [3] 尹高扬, 周绍磊, 贺鹏程, 等.国外多无人机协同任务分配研究现状及发展趋势[J].飞航导弹, 2016(5):54-58.YIN G Y, ZHOU S L, HE P C, et al.Research status and development trend of cooperative task allocation for multiple UAVs in foreign countries[J].Aerodynamic Missile Journal, 2016, (5):54-58(in Chinese). [4] PACK D, YORK G, FIERRO R.Information-based cooperative control for multiple unmanned aerial vehicles[C]//Proceeding of the 2006 IEEE International Conference on Networking, Sensing and Control.Piscataway: IEEE Press, 2006: 446-450. [5] 陈侠, 乔艳芝.无人机任务分配综述[J].沈阳航空航天大学学报, 2016, 33(6):1-7. doi: 10.3969/j.issn.2095-1248.2016.06.001CHEN X, QIAO Y Z.Summary of unmanned aerial vehicle task allocation[J].Journal of Shenyang Aerospace University, 2016, 33(6):1-7(in Chinese). doi: 10.3969/j.issn.2095-1248.2016.06.001 [6] SHIMA T, RASMUSSEN S J, SPARKS A G.Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms[J].Computers & Operations Research, 2006, 33(11):3252-3269. http://dl.acm.org/citation.cfm?id=1143198&preflayout=flat [7] 苏菲, 陈岩, 沈林成.基于蚁群算法的无人机协同多任务分配[J].航空学报, 2008, 29(S1):S184-S191.SU F, CHEN Y, SHEN L C.UAV cooperative multi-task assignment based on ant colony algorithm[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(S1):S184-S191(in Chinese). [8] 张耀中, 陈岚, 史国庆, 等.时序耦合约束下的多无人机协同任务决策研究[J].西北工业大学学报, 2018, 36(5):890-896. doi: 10.3969/j.issn.1000-2758.2018.05.011ZHANG Y Z, CHEN L, SHI G Q, et al.Collaborative task assignment for multi-UAV with sequence and time constrains[J].Journal of Northwestern Polytechnical University, 2018, 36(5):890-896(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.05.011 [9] 颜骥, 李相民, 刘波.应用离散粒子群-郭涛算法分配多无人机协同任务[J].国防科技大学学报, 2015, 37(4):165-171.YAN J, LI X M, LIU B.Cooperative task allocation of multi-UAVs with mixed DPSO-GT algorithm[J].Journal of National University of Defense Technology, 2015, 37(4):165-171(in Chinese). [10] JIA Z, YU J, AI X, et al.Cooperative multiple task assignment problem with stochastic velocities and time windows for heterogeneous unmanned aerial vehicles using a genetic algorithm[J].Aerospace Science and Technology, 2018, 76(1):112-125. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110710538.html [11] 王宇琦, 张安, 毕文.有人/无人机编队打击时敏目标任务分配[J].电光与控制, 2018, 25(8):7-10. doi: 10.3969/j.issn.1671-637X.2018.08.002WANG Y Q, ZHANG A, BI W.Mission planning of manned/unmanned aerial vehicle formation for time critical target attacking[J].Electronics Optics & Control, 2018, 25(8):7-10(in Chinese). doi: 10.3969/j.issn.1671-637X.2018.08.002 [12] 田震, 王晓芳.基于多基因遗传算法的异构多无人机协同任务分配[J].飞行力学, 2019, 37(1):39-44.TIAN Z, WANG X F.Cooperative multiple task assignment for heterogeneous multi-UAVs with multi-chromosome genetic algorithm[J].Flight Dynamics, 2019, 37(1):39-44(in Chinese). [13] DENG Q, YU J, WANG N.Cooperative task assignment of multiple heterogeneous unmanned aerial vehicles using a modified genetic algothrithm with multi-type genes[J].Chinese Journal of Aeronautics, 2013, 26(5):1238-1250. doi: 10.1016/j.cja.2013.07.009 [14] 李炜, 张伟.基于粒子群算法的多无人机任务分配方法[J].控制与决策, 2010, 25(9):1359-1363.LI W, ZHANG W.Method of tasks allocation of multi-UAVs based on particles swarm optimization[J].Control and Decision, 2010, 25(9):1359-1363(in Chinese). [15] 宋敏, 魏瑞轩, 冯志明.基于差分进化算法的异构多无人机任务分配[J].系统仿真学报, 2010, 22(7):1705-1710.SONG M, WEI R X, FENG Z M.Cooperative task assignment for heterogeneous multi-UAVs based on differential evolution algorithm[J].Journal of System Simulation, 2010, 22(7):1705-1710(in Chinese). [16] TAO G, MICHALEWICZ Z.Inver-over operator for the TSP[C]//Proceedings of the 5th International Conference on Parallel Problem Solving from Nature.Berlin: Springer, 1998: 803-812. [17] 宗群, 秦新立, 张博渊, 等.基于DPSO-GT-SA算法的大规模UCAV协同任务分配[J].天津大学学报(自然科学与工程技术版), 2018, 10(51):7-11.ZONG Q, QIN X L, ZHANG B Y, et al.Cooperative task allocation of large-scale UCAV based on DPSO-GT-SA algorithm[J].Journal of Tianjin University(Science and Technology), 2018, 10(51):7-11(in Chinese). [18] 孙晓闻.无人/有人机协同探测/作战应用研究[J].中国电子科学研究院学报, 2014, 9(4):331-334. doi: 10.3969/j.issn.1673-5692.2014.04.001SUN X W.Application research for cooperative detection combat of unmanned/manned aerial vehicles[J].Journal of CAEIT, 2014, 9(4):331-334(in Chinese). doi: 10.3969/j.issn.1673-5692.2014.04.001 [19] 付昭旺, 于雷, 周中良, 等.双击协同攻击指令瞄准建模及精度研究[J].空军工程大学学报(自然科学版), 2013, 14(1):5-10.FU Z W, YU L, ZHOU Z L, et al. Research on coordinated targeting modeling and precision for double fighter[J]. Journal of Air Force Engineering University(Natural Science Edition), 2013, 14(1):5-10(in Chinese). [20] 刁兴华, 方洋旺, 伍友利, 等.双机编队空空导弹协同发射区模拟仿真分析[J].北京航空航天大学学报, 2014, 40(3):370-376. doi: 10.13700/j.bh.1001-5965.2013.0237DIAO X H, FANG Y W, WU Y L, et al.Simulation analysis on air-to-air missile allowable launch envelope about cooperative air combat of multi-fighter formation[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3):370-376(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0237