留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CLYC闪烁体的中子能谱测量及反演方法

侯东辉 张珅毅 杨祎罡 王琦标 张斌全 余庆龙

侯东辉, 张珅毅, 杨祎罡, 等 . 基于CLYC闪烁体的中子能谱测量及反演方法[J]. 北京航空航天大学学报, 2021, 47(1): 106-114. doi: 10.13700/j.bh.1001-5965.2019.0643
引用本文: 侯东辉, 张珅毅, 杨祎罡, 等 . 基于CLYC闪烁体的中子能谱测量及反演方法[J]. 北京航空航天大学学报, 2021, 47(1): 106-114. doi: 10.13700/j.bh.1001-5965.2019.0643
HOU Donghui, ZHANG Shenyi, YANG Yigang, et al. Neutron measurement and inversion based on CLYC scintillator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 106-114. doi: 10.13700/j.bh.1001-5965.2019.0643(in Chinese)
Citation: HOU Donghui, ZHANG Shenyi, YANG Yigang, et al. Neutron measurement and inversion based on CLYC scintillator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 106-114. doi: 10.13700/j.bh.1001-5965.2019.0643(in Chinese)

基于CLYC闪烁体的中子能谱测量及反演方法

doi: 10.13700/j.bh.1001-5965.2019.0643
基金项目: 

国家自然科学基金 41941001

详细信息
    作者简介:

    侯东辉  女, 博士研究生。主要研究方向:探测器设计仿真及数据处理

    张珅毅  男, 博士, 研究员, 博士生导师。主要研究方向:粒子探测器设计

    通讯作者:

    张珅毅, E-mail: zsy@nssc.ac.cn

  • 中图分类号: V447+.1

Neutron measurement and inversion based on CLYC scintillator

Funds: 

National Natural Science Foundation of China 41941001

More Information
  • 摘要:

    空间中子是影响航天器和航天员安全的重要辐射要素之一。优化中子探测器,提高测量效率,提升反演精度是中子测量的难点。中国空间站将搭载一种基于新型中子探测材料Cs2LiYCl6:Ce(CLYC)闪烁体的中子探测器,该探测器具有同时测量热中子和快中子,以及探测效率高等特点。针对该新型探测器的中子能谱反演,分析了不同能量中子在该探测器中的响应特点,分析了中子反演常用的概率迭代法和非负最小二乘(NNLS)法的优缺点,考虑到这2种方法在CLYC探测器反演应用中的不足,提出了基于增广矩阵的非负最小二乘(AM-NNLS)法。数值实验结果表明:AM-NNLS法具有反演运算效率高和反演相对误差小的特点,验证了所提方法的有效性。

     

  • 图 1  反符合结构

    Figure 1.  Anti-coincidence structure

    图 2  中子探测器的逻辑工作方式

    Figure 2.  Logic schematic diagram of neutron detector

    图 3  热中子以及5 MeV的单能中子在CLYC闪烁体中的沉积能谱

    Figure 3.  Deposited energy spectrum of thermal neutron and 5 MeV monoenergetic neutron in CLYC scintillator

    图 4  CLYC闪烁体中对热中子和快中子(0.025 eV~100 MeV)的响应函数

    Figure 4.  Response functions of thermal neutron and fast neutron (0.025 eV-100 MeV) in CLYC scintillator

    图 5  响应函数在每个能道的不确定度

    Figure 5.  Uncertainty of response function with different channels

    图 6  概率迭代法的反演步骤

    Figure 6.  Inversion steps of probabilistic iterative method

    图 7  基于概率迭代法和NNLS法的中子微分谱

    Figure 7.  Neutron differential spectrum based on probabilisticiterative method and NNLS

    图 8  NNLS法与AM-NNLS法的能谱对比

    Figure 8.  Comparative energy spectrum of non-negative least squares method and AM-NNLS

    图 9  相对误差

    Figure 9.  Relative error

    图 10  不同测量总计数时反演得到的能谱

    Figure 10.  Inverted energy spectra for different measurements

    图 11  测量总计数不同时2种反演方法得到的能谱与真实入射谱之间的相对误差

    Figure 11.  Relative error between energy spectrum obtained from two inversion methods and actual input spectrum when measured values are different

    表  1  中子与CLYC闪烁体反应过程[15-16]

    Table  1.   Reaction of neutron with CLYC scintillator[15-16]

    反应 Q/MeV 能量区间
    6Li+n→3H+ɑ +4.78 热中子及快中子
    35Cl+n→35S+P +0.615 快中子
    下载: 导出CSV

    表  2  概率迭代法与AM-NNLS法反演能谱所需时间对比

    Table  2.   Time comparison between probabilistic iterative method and AM-NNLS for inversion of energy spectrum

    测量总计数 耗时/s
    概率迭代法 AM-NNLS
    102 138 5
    103 143 4
    104 156 5
    105 150 5
    下载: 导出CSV
  • [1] MOUNTFORD P J, TEMPERTON D H.Recommendations of the international commission on radiological protection(ICRP)1990[J].European Journal of Nuclear Medicine, 1992, 19(2):77-79. http://www.ncbi.nlm.nih.gov/pubmed/1563443
    [2] MAZUR J E, CRAIN W R, LOOPER M D, et al.New measurements of total ionizing dose in the lunar environment[J].Space Weather-The International Journal of Research & Applications, 2011, 9(7):1-12. http://ieeexplore.ieee.org/document/7766610/
    [3] KOSHIISHI H, MATSUMOTO H, CHISHIKI A, et al.Evaluation of the neutron radiation environment inside the International Space Station based on the bonner ball neutron detector experiment[J].Radiation Measurements, 2007, 42(9):1510-1520. doi: 10.1016/j.radmeas.2007.02.072
    [4] HASSLER D M, ZEITLIN C, WIMMER-SCHWEINGRUBER R F, et al.The radiation assessment detector (RAD) investigation[J].Space Science Reviews, 2012, 170(1-4):503-558. doi: 10.1007/s11214-012-9913-1
    [5] TANIGUCHI T, UEDA N, NAKAZAWA M, et al.Systematic study on spectral effects in the adjustment calculations using the NEUPAC-83 code[M].Berlin:Springer, 1985:685-691.
    [6] KOHLER J, EHRESMANN B, MARTIN C, et al.Inversion of neutron/gamma spectra from scintillator measurements[J].Nuclear Instruments and Methods in Physics Research B, 2011, 269:2641-2648. doi: 10.1016/j.nimb.2011.07.021
    [7] 王冬, 何彬, 张全虎.用遗传算法求解中子能谱[J].原子能科学技术, 2010, 44(10):1270-1275.

    WANG D, HE B, ZHANG Q H.Unfolding neutron spectrum using genertic algorithm[J].Atomic Energy Science and Technology, 2010, 44(10):1270-1275(in Chinese).
    [8] 杨鑫, 李润东, 刘汉刚, 等.基于概率迭代的NDP反演方法[J].计算物理, 2012, 29(6):891-900. doi: 10.3969/j.issn.1001-246X.2012.06.014

    YANG X, LI R D, LIU H G, et al.An unfolding method of NDP based on probability iteration[J].Chinese Journal of Computational Physics, 2012, 29(6):891-900(in Chinese). doi: 10.3969/j.issn.1001-246X.2012.06.014
    [9] D'OLYMPIA N W, NATHAN W.Development of novel neutron and gamma-ray scintillators: Cs2LiYCl6: Ce and CeBr3[D].Boston: University of Massachusetts, 2013: 8-40.
    [10] 胡圣荣, 戴纳新.病态线性方程组的新解法:增广方程组法[J].华南农业大学学报, 2009, 30(1):119-121.

    HU S R, DAI N X.A novel method for solving Ⅲ-conditioned liner system:Augmented system method[J].Journal of South China Agricultural University, 2009, 30(1):119-121(in Chinese).
    [11] 李肖.反符合探测杯在空间粒子探测中的应用[D].北京: 中国科学院, 2015: 5-23.

    LI X.The application of anti-coincidence detective cup technology in space particle detection[D].Beijing: University of Chinese Academy of Science, 2015: 5-23(in Chinese).
    [12] WHITNEY C M, SOUNDARA-PANDIAN L, JOHNSON E B, et al.Gamma-neutron imaging system utilizing pulse shape discrimination with CLYC[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784:346-351. doi: 10.1016/j.nima.2014.09.022
    [13] LEE D W, STONEHILL L C, KLIMENKO A, et al.Pulse-shape analysis of Cs2LiYCl6:Ce scintillator for neutron and gamma-ray discrimination[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 664(1):1-5.
    [14] WANG Q B, TUO X G, DENG C, et al.Characterization of a Cs2LiYCl6:Ce3+ scintillator coupled with two silicon photomultiplier arrays of different sizes[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 942:1-5. http://www.sciencedirect.com/science/article/pii/S0168900219309258
    [15] D'OLYMPIA N W, CHOWDHURY P, LISTER C J, et al.Pulse-shape analysis of CLYC for thermal neutrons, fast neutrons, and gamma-rays[J].Nuclear Instruments and Methods in Physics Research Section A:Accereators, Spectrometers, Detectors and Associated Equipment, 2013, 714:121-127. http://www.sciencedirect.com/science/article/pii/S0168900213002349
    [16] BROWN D, CHADWICK M B, CAPOTE R, et al.ENDF/B-Ⅷ.0:The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new stantards and thermal scattering data[J].Nuclear Data Sheets, 2018, 148(2):1-142.
    [17] AGOSTINELLI S, ALLISON J, AMAKO K, et al.GEANT4-A simulation toolkit[J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3):250-303.
    [18] ZHANG S Y, ZHANG X G, WANG C Q, et al.The geometric factor of high energy protons detector on FY-3 satellite[J].Science China Earth Sciences, 2014, 57(10):2558-2566. doi: 10.1007/s11430-014-4853-0
    [19] KHARYTONOV A, BÖHM, E, WIMMER-SCHWEINGRUBER R F.Regularization methods used in error analysis of solar particle spectra measured on SOHO/EPHIN[J].Astronomy & Astrophysics, 2009, 495(2):663-675.
    [20] GUO J N, BANJAC S, ROSTEL L, et al.Implementation and validation of the GEANT4/AtRIS code to model the radiation environment at Mars[J].Journal of Space Weather and Space Climate, 2019, 9(3):1-30. http://arxiv.org/abs/1901.01787
    [21] NOWAK R D, KOLACZYK E D.A statistical multiscale framework for Poisson inverse problems[J].IEEE Transactions on Information Theory, 2000, 46(5):1811-1825. doi: 10.1109/18.857793
    [22] WILLIAM H P, BRIAN P F, SAUL A, et al.Numerical recipes:The art of scientific computing[M].Cambridge:Cambridge University Press, 2007:809-816.
    [23] LAWSON C L, HANSON R J.Solving least squares problems[M].Philadelphia:Society for lndustrial and Applied Mathematics, 1987:1-5.
    [24] BÖHM E, KHARYTONOV A, WIMMER-SCHWEINGRUBER R F.Solar energetic particle spectra from the SOHO-EPHIN sensor by application of regularization methods[J].Astronomy & Astrophysics, 2007, 473(2):673-682.
    [25] MORALE J L, NOCEDAL J.Remark on 'algorithm 778:L-BFGS-B:Fortran subroutines for large-scale bound constrained optimization'[J].ACM Transactions on Mathematical Software, 2011, 38(1):1-4.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1217
  • HTML全文浏览量:  124
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 录用日期:  2020-04-17
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答