-
摘要:
针对传统路径跟踪方法不能有效解决移动路径跟踪(MPF)问题, 通过改进时变向量场方法提出一种新型移动路径跟踪控制方法, 并应用到舰载机自主着舰控制问题中。基于舰载机非线性模型, 以反步法为主体框架, 在时变向量场中定义轨迹误差, 同时为定义的虚拟控制量设计Lyapunov函数, 实现航向角和爬升角的快速准确跟踪, 保证舰载机航迹跟踪期望移动路径。稳定性分析证明跟踪误差收敛, 仿真结果表明控制方法具有良好的着舰性能。
-
关键词:
- 移动路径跟踪(MPF) /
- 自主着舰 /
- 时变向量场 /
- 反步法 /
- 干扰观测器
Abstract:This paper proposes a novel Moving Path Following (MPF) control method by improving the time-varying vector field method. Moreover, it is applied to the automatic carrier landing problem of carrier-based aircraft. Based on the nonlinear model of carrier-based aircraft, backstepping method is used as the main frame. Besides, the path following error is defined in the time-varying vector field. In addition, Lyapunov function is designed for the defined virtual control variable to achieve fast and accurate tracking for the heading angle and the climb angle, and the path of the aircraft is ensured to follow the desired moving path. The stability analysis proves that the following error converges to a small region, and the simulation results show that the control method has good performance in carrier landing.
-
[1] 张智, 朱契丹, 张雯.航母舰载机全自动引导着舰技术[M].哈尔滨:哈尔滨工程大学出版社, 2016:3-4.ZHANG Z, ZHU Q D, ZHANG W.Aircraft carrier automatic carrier landing technology[M].Harbin:Harbin Engineering University Press, 2016:3-4(in Chinese). [2] 朱丽红.带有时变惯性阵无人艇的路径跟踪[D].哈尔滨: 哈尔滨工程大学, 2018: 4-6.ZHU L H.Path following with time-varying inertial array unmanned boat[M].Harbin: Harbin Engineering University, 2018: 4-6(in Chinese). [3] PARK S, DEYST J, HOW J.A new nonlinear guidance logic for trajectory tracking: AIAA-2004-4900[R].Reston: AIAA, 2004. [4] SAFWAT E, ZHANG W, WU M, et al.Robust path following controller for unmanned aerial vehicle based on carrot chasing guidance law using dynamic inversion[C]//The 18th International Conference on Control, Automation and System.Piscataway: IEEE Press, 2018: 1444-1450. [5] 马振宇, 祝小平, 周洲, 等.全翼布局无人机滑跑轨迹跟踪方法对比与试验[J].飞行力学, 2019, 37(6):72-78.MA Z Y, ZHU X P, ZHOU Z, et al.Comparison and test of running path following methods for full-wing UAV[J].Flight Dynamics, 2019, 37(6):72-78(in Chinese). [6] ZHENG Z W, SUN L, XIE L H.Error-constrained LOS path following of a surface vessel with actuator saturation and faults[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018:48(10):2168-2216. http://ieeexplore.ieee.org/document/7970175/ [7] 李英杰, 吴文海, 韩维元.基于线性矩阵不等式的舰载机纵向着舰H∞控制[J].飞行力学, 2005, 23(3):48-51. doi: 10.3969/j.issn.1002-0853.2005.03.013LI Y J, WU W H, HAN W Y.H∞ control of the longitudinal carrier landing system for carrier aircraft based on LMI[J].Flight Dynamics, 2005, 23(3):48-51(in Chinese). doi: 10.3969/j.issn.1002-0853.2005.03.013 [8] 邵敏敏, 龚华军, 甄子洋, 等.基于H2预见控制的舰载机自动着舰控制方法[J].电光与控制, 2015, 22(9):68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201509016.htmSHAO M M, GONG H J, ZHEN Z Y, et al.An H2 preview based antomatic landing control method for carrier based aircraft[J].Electronics Optics & Control, 2015, 22(9):68-71 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201509016.htm [9] 甄子洋, 陶钢, 江驹, 等.无人机自动撞网着舰轨迹自适应跟踪控制[J].哈尔滨工程大学学报, 2017, 38(12):1922-1927. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712016.htmZHEN Z Y, TAO G, JIANG J, et al.Adaptive tracking control of automatic net landing trajectory for carrier-based unmanned aerial vehicle[J].Jouurnal of Harbin Engineering University, 2017, 38(12):1922-1927(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712016.htm [10] ZHEN Z Y, JIANG S Y, JIANG J.Preview control and particle filtering for automatic carrier landing[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2662-2674. doi: 10.1109/TAES.2018.2826398 [11] ZHEN Z Y, YU C J, JIANG S J, et al.Adaptive Super-Twisting control for automatic carrier landing of aircraft[J].IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2):984-997. doi: 10.1109/TAES.2019.2924134 [12] YURI A K, DEHECTOR G M, ANTON V P, et al.Guiding vector field algorithm for a moving path following problem[J].IFAC PapersOnLine, 2017, 50(1):6983-6988. doi: 10.1016/j.ifacol.2017.08.1340 [13] WANG Y Z, WANG D W, ZHU S Q.Cooperative moving path following for multiple fixed-wing unmanned aerial vehicles with speed constraints[J].Automatica, 2019, 100:82-89. doi: 10.1016/j.automatica.2018.11.004 [14] OLIVEIRA T, AGUIAR A P, ENCARNACAO P.Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems[J].IEEE Transactions on Robotics, 2016, 32(5):1062-1078. doi: 10.1109/TRO.2016.2593044 [15] 张超, 张胜修, 刘毅男, 等.约束自适应反步法及其在飞行控制中的应用[J].控制工程, 2014, 21(3):430-435. doi: 10.3969/j.issn.1671-7848.2014.03.027ZHANG C, ZHANG S X, LIU Y N, et al.Constrained adaptive backstepping with application to flight control[J].Control Engineering of China, 2014, 21(3):430-435(in Chinese). doi: 10.3969/j.issn.1671-7848.2014.03.027 [16] 吴文海, 张杨, 胡云安, 等.舰载机着舰非线性反演控制方法研究进展[J].系统工程与电子技术, 2018, 40(7):1578-1587. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807024.htmWU W H, ZHANG Y, HU Y A, et al.Research development in nonlinear backstepping control method of carrier-based aircraft landing[J].Systems Engineering and Electronics, 2018, 40(7):1578-1587(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807024.htm [17] AN H, LIU J, WANG C, et al.Approximate backstepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J].IEEE/ASME Transactions Mechatronics, 2016, 21(3):1680-1691. doi: 10.1109/TMECH.2015.2507186 [18] 杨晓骞.不确定条件下高超声速飞行器轨迹优化与控制方法研究[D].长沙: 国防科学技术大学, 2016: 58-59.YANG X Q.Research on trajectory optimization and control approach for hypersonic vehicle under uncertainty[D].Changsha: National University of Defense Technology, 2016: 58-59(in Chinese). [19] XIANG W B, XIAO Y W, RUI Z, et al.Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J].Journal of the Franklin Institute, 2015, 352(4):1739-1765. doi: 10.1016/j.jfranklin.2015.01.014 [20] ADAMS R J, BUFFINGTON J M, BANDA S S.Design of nonlinear control laws for high-angle-of-attack flight[J].Journal of Guidance, Control, and Dynamics, 2012, 17(4):737-746. doi: 10.2514/3.21262 [21] CHAKRABORY A, SEILER P, BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):73-85. doi: 10.2514/1.50675 [22] 徐倩, 王肖, 吴洁, 等.基于扩张状态观测器和指令滤波器的导弹姿态控制[J].飞行力学, 2018, 36(1):52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801013.htmXV Q, WANG X, WU J, et al.Attitude control of missile based on extended state observer and command filter[J].Flight Dynamics, 2018, 36(1):52-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801013.htm [23] 甄子洋, 王新华, 江驹, 等.舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(2):127-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201702012.htmZHEN Z Y, WANG X H, JIANG J, et al.Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):127-148(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201702012.htm [24] 张志冰, 甄子洋, 江驹, 等.舰载机自动着舰引导与控制综述[J].南京航空航天大学学报, 2018, 50(6):734-744. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806002.htmZHANG Z B, ZHEN Z Y, JIANG J, et al.Review on development in guidance and control of automatic carrier landing of carrier-based aircraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):734-744(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806002.htm [25] NAPOLITANO M, PARIS A, SEANOR B, et al.Estimation of the longitudinal aerodynamic parameters from flight data for the NASA F/A-18 HARV[C].Proceedings of the 21st Atmospheric Flight Mechanics Conference, 2013: 469-478.