留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性移动路径跟踪及着舰控制应用

毕道明 黄辉 范静 周海彤 关智元 郑泽伟

毕道明, 黄辉, 范静, 等 . 非线性移动路径跟踪及着舰控制应用[J]. 北京航空航天大学学报, 2021, 47(1): 45-55. doi: 10.13700/j.bh.1001-5965.2019.0646
引用本文: 毕道明, 黄辉, 范静, 等 . 非线性移动路径跟踪及着舰控制应用[J]. 北京航空航天大学学报, 2021, 47(1): 45-55. doi: 10.13700/j.bh.1001-5965.2019.0646
BI Daoming, HUANG Hui, FAN Jing, et al. Nonlinear moving path following control and its application to carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 45-55. doi: 10.13700/j.bh.1001-5965.2019.0646(in Chinese)
Citation: BI Daoming, HUANG Hui, FAN Jing, et al. Nonlinear moving path following control and its application to carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 45-55. doi: 10.13700/j.bh.1001-5965.2019.0646(in Chinese)

非线性移动路径跟踪及着舰控制应用

doi: 10.13700/j.bh.1001-5965.2019.0646
基金项目: 

北京市自然科学基金 4202038

北京市自然科学基金 4172070

国家自然科学基金 61827901

详细信息
    作者简介:

    毕道明  男, 博士研究生, 高级工程师。主要研究方向:视觉引导与控制、飞行器管理系统设计等

    黄辉  男, 博士, 高级工程师。主要研究方向:飞行器导航、制导与控制

    范静  女, 硕士, 工程师。主要研究方向:视觉导航与飞行控制

    周海彤  女, 硕士研究生。主要研究方向:非线性控制

    关智元  男, 博士研究生。主要研究方向:飞行控制

    郑泽伟  男, 博士, 副教授。主要研究方向:非线性控制理论与应用

    通讯作者:

    郑泽伟, E-mail: zeweizheng@buaa.edu.cn

  • 中图分类号: V249.122+.5

Nonlinear moving path following control and its application to carrier landing

Funds: 

Beijing Natural Science Foundation 4202038

Beijing Natural Science Foundation 4172070

National Natural Science Foundation of China 61827901

More Information
  • 摘要:

    针对传统路径跟踪方法不能有效解决移动路径跟踪(MPF)问题, 通过改进时变向量场方法提出一种新型移动路径跟踪控制方法, 并应用到舰载机自主着舰控制问题中。基于舰载机非线性模型, 以反步法为主体框架, 在时变向量场中定义轨迹误差, 同时为定义的虚拟控制量设计Lyapunov函数, 实现航向角和爬升角的快速准确跟踪, 保证舰载机航迹跟踪期望移动路径。稳定性分析证明跟踪误差收敛, 仿真结果表明控制方法具有良好的着舰性能。

     

  • 图 1  期望路径表示与跟踪误差定义

    Figure 1.  Definition of desired path and tracking error

    图 2  控制系统框架

    Figure 2.  Architecture of control system

    图 3  整体几何框图

    Figure 3.  Geometric illustration of frames

    图 4  期望路径的几何图示

    Figure 4.  Geometric illustration of desired paths

    图 5  非线性干扰观测器对舰尾流的估计

    Figure 5.  Nonlinear disturbance observer estimates air wake

    图 6  甲板运动与舰尾流的纵向跟踪误差

    Figure 6.  Tracking error in longitudinal plane with deck motion and air wake

    图 7  甲板运动与舰尾流的横向跟踪误差

    Figure 7.  Tracking error in latitudinal plane with deck motion and air wake

    图 8  甲板运动与舰尾流的姿态角变化

    Figure 8.  Diversification of attitude angle with deck motion and air wake

    图 9  甲板运动与舰尾流的舵面变化

    Figure 9.  Diversification of control surface with deck motion and air wake

  • [1] 张智, 朱契丹, 张雯.航母舰载机全自动引导着舰技术[M].哈尔滨:哈尔滨工程大学出版社, 2016:3-4.

    ZHANG Z, ZHU Q D, ZHANG W.Aircraft carrier automatic carrier landing technology[M].Harbin:Harbin Engineering University Press, 2016:3-4(in Chinese).
    [2] 朱丽红.带有时变惯性阵无人艇的路径跟踪[D].哈尔滨: 哈尔滨工程大学, 2018: 4-6.

    ZHU L H.Path following with time-varying inertial array unmanned boat[M].Harbin: Harbin Engineering University, 2018: 4-6(in Chinese).
    [3] PARK S, DEYST J, HOW J.A new nonlinear guidance logic for trajectory tracking: AIAA-2004-4900[R].Reston: AIAA, 2004.
    [4] SAFWAT E, ZHANG W, WU M, et al.Robust path following controller for unmanned aerial vehicle based on carrot chasing guidance law using dynamic inversion[C]//The 18th International Conference on Control, Automation and System.Piscataway: IEEE Press, 2018: 1444-1450.
    [5] 马振宇, 祝小平, 周洲, 等.全翼布局无人机滑跑轨迹跟踪方法对比与试验[J].飞行力学, 2019, 37(6):72-78.

    MA Z Y, ZHU X P, ZHOU Z, et al.Comparison and test of running path following methods for full-wing UAV[J].Flight Dynamics, 2019, 37(6):72-78(in Chinese).
    [6] ZHENG Z W, SUN L, XIE L H.Error-constrained LOS path following of a surface vessel with actuator saturation and faults[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018:48(10):2168-2216. http://ieeexplore.ieee.org/document/7970175/
    [7] 李英杰, 吴文海, 韩维元.基于线性矩阵不等式的舰载机纵向着舰H控制[J].飞行力学, 2005, 23(3):48-51. doi: 10.3969/j.issn.1002-0853.2005.03.013

    LI Y J, WU W H, HAN W Y.H control of the longitudinal carrier landing system for carrier aircraft based on LMI[J].Flight Dynamics, 2005, 23(3):48-51(in Chinese). doi: 10.3969/j.issn.1002-0853.2005.03.013
    [8] 邵敏敏, 龚华军, 甄子洋, 等.基于H2预见控制的舰载机自动着舰控制方法[J].电光与控制, 2015, 22(9):68-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201509016.htm

    SHAO M M, GONG H J, ZHEN Z Y, et al.An H2 preview based antomatic landing control method for carrier based aircraft[J].Electronics Optics & Control, 2015, 22(9):68-71 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DGKQ201509016.htm
    [9] 甄子洋, 陶钢, 江驹, 等.无人机自动撞网着舰轨迹自适应跟踪控制[J].哈尔滨工程大学学报, 2017, 38(12):1922-1927. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712016.htm

    ZHEN Z Y, TAO G, JIANG J, et al.Adaptive tracking control of automatic net landing trajectory for carrier-based unmanned aerial vehicle[J].Jouurnal of Harbin Engineering University, 2017, 38(12):1922-1927(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201712016.htm
    [10] ZHEN Z Y, JIANG S Y, JIANG J.Preview control and particle filtering for automatic carrier landing[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2662-2674. doi: 10.1109/TAES.2018.2826398
    [11] ZHEN Z Y, YU C J, JIANG S J, et al.Adaptive Super-Twisting control for automatic carrier landing of aircraft[J].IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2):984-997. doi: 10.1109/TAES.2019.2924134
    [12] YURI A K, DEHECTOR G M, ANTON V P, et al.Guiding vector field algorithm for a moving path following problem[J].IFAC PapersOnLine, 2017, 50(1):6983-6988. doi: 10.1016/j.ifacol.2017.08.1340
    [13] WANG Y Z, WANG D W, ZHU S Q.Cooperative moving path following for multiple fixed-wing unmanned aerial vehicles with speed constraints[J].Automatica, 2019, 100:82-89. doi: 10.1016/j.automatica.2018.11.004
    [14] OLIVEIRA T, AGUIAR A P, ENCARNACAO P.Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems[J].IEEE Transactions on Robotics, 2016, 32(5):1062-1078. doi: 10.1109/TRO.2016.2593044
    [15] 张超, 张胜修, 刘毅男, 等.约束自适应反步法及其在飞行控制中的应用[J].控制工程, 2014, 21(3):430-435. doi: 10.3969/j.issn.1671-7848.2014.03.027

    ZHANG C, ZHANG S X, LIU Y N, et al.Constrained adaptive backstepping with application to flight control[J].Control Engineering of China, 2014, 21(3):430-435(in Chinese). doi: 10.3969/j.issn.1671-7848.2014.03.027
    [16] 吴文海, 张杨, 胡云安, 等.舰载机着舰非线性反演控制方法研究进展[J].系统工程与电子技术, 2018, 40(7):1578-1587. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807024.htm

    WU W H, ZHANG Y, HU Y A, et al.Research development in nonlinear backstepping control method of carrier-based aircraft landing[J].Systems Engineering and Electronics, 2018, 40(7):1578-1587(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201807024.htm
    [17] AN H, LIU J, WANG C, et al.Approximate backstepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J].IEEE/ASME Transactions Mechatronics, 2016, 21(3):1680-1691. doi: 10.1109/TMECH.2015.2507186
    [18] 杨晓骞.不确定条件下高超声速飞行器轨迹优化与控制方法研究[D].长沙: 国防科学技术大学, 2016: 58-59.

    YANG X Q.Research on trajectory optimization and control approach for hypersonic vehicle under uncertainty[D].Changsha: National University of Defense Technology, 2016: 58-59(in Chinese).
    [19] XIANG W B, XIAO Y W, RUI Z, et al.Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle[J].Journal of the Franklin Institute, 2015, 352(4):1739-1765. doi: 10.1016/j.jfranklin.2015.01.014
    [20] ADAMS R J, BUFFINGTON J M, BANDA S S.Design of nonlinear control laws for high-angle-of-attack flight[J].Journal of Guidance, Control, and Dynamics, 2012, 17(4):737-746. doi: 10.2514/3.21262
    [21] CHAKRABORY A, SEILER P, BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):73-85. doi: 10.2514/1.50675
    [22] 徐倩, 王肖, 吴洁, 等.基于扩张状态观测器和指令滤波器的导弹姿态控制[J].飞行力学, 2018, 36(1):52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801013.htm

    XV Q, WANG X, WU J, et al.Attitude control of missile based on extended state observer and command filter[J].Flight Dynamics, 2018, 36(1):52-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201801013.htm
    [23] 甄子洋, 王新华, 江驹, 等.舰载机自动着舰引导与控制研究进展[J].航空学报, 2017, 38(2):127-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201702012.htm

    ZHEN Z Y, WANG X H, JIANG J, et al.Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(2):127-148(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201702012.htm
    [24] 张志冰, 甄子洋, 江驹, 等.舰载机自动着舰引导与控制综述[J].南京航空航天大学学报, 2018, 50(6):734-744. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806002.htm

    ZHANG Z B, ZHEN Z Y, JIANG J, et al.Review on development in guidance and control of automatic carrier landing of carrier-based aircraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6):734-744(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201806002.htm
    [25] NAPOLITANO M, PARIS A, SEANOR B, et al.Estimation of the longitudinal aerodynamic parameters from flight data for the NASA F/A-18 HARV[C].Proceedings of the 21st Atmospheric Flight Mechanics Conference, 2013: 469-478.
  • 加载中
图(9)
计量
  • 文章访问数:  627
  • HTML全文浏览量:  66
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 录用日期:  2020-02-03
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答