留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定理论下竞争失效系统的可靠性分析

师海燕 魏淳 温艳清 张志强 刘宝亮

师海燕, 魏淳, 温艳清, 等 . 不确定理论下竞争失效系统的可靠性分析[J]. 北京航空航天大学学报, 2021, 47(1): 84-89. doi: 10.13700/j.bh.1001-5965.2019.0656
引用本文: 师海燕, 魏淳, 温艳清, 等 . 不确定理论下竞争失效系统的可靠性分析[J]. 北京航空航天大学学报, 2021, 47(1): 84-89. doi: 10.13700/j.bh.1001-5965.2019.0656
SHI Haiyan, WEI Chun, WEN Yanqing, et al. Reliability analysis for systems subject to competing failure processes based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 84-89. doi: 10.13700/j.bh.1001-5965.2019.0656(in Chinese)
Citation: SHI Haiyan, WEI Chun, WEN Yanqing, et al. Reliability analysis for systems subject to competing failure processes based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 84-89. doi: 10.13700/j.bh.1001-5965.2019.0656(in Chinese)

不确定理论下竞争失效系统的可靠性分析

doi: 10.13700/j.bh.1001-5965.2019.0656
基金项目: 

国家自然科学基金 71601101

山西省高等学校科技创新项目 2019L0738

详细信息
    作者简介:

    师海燕  女, 硕士, 讲师。主要研究方向:可靠性理论及其应用

    温艳清  女, 博士, 副教授。主要研究方向:可靠性理论及其应用

    通讯作者:

    温艳清

  • 中图分类号: O213;O211.62

Reliability analysis for systems subject to competing failure processes based on uncertainty theory

Funds: 

National Natural Science Foundation of China 71601101

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi 2019L0738

  • 摘要:

    针对有新研发产品,故障数据较少的复杂系统,提出了不确定环境下自然退化和外部冲击相互独立的竞争失效模型。考虑了系统同时遭受自然退化和外部冲击,连续的自然退化用一个不确定过程刻画,冲击到达的时间间隔和每次冲击对系统造成的损坏量分别用2个不同的不确定变量来刻画。运用不确定理论,分别在极端冲击模型、累积冲击模型、δ冲击模型下,研究了系统的确信可靠度,结果表明:在有新研发的产品、故障数据较少的复杂系统,用不确定理论的方法来描述模型更合适,并通过数值分析显示了模型的有效性。

     

  • 图 1  极端冲击模型的确信可靠度R(t)

    Figure 1.  Belief reliability R(t) of extreme shock model

    图 2  累积冲击模型的确信可靠度R(t)

    Figure 2.  Belief reliability R(t) of cumulative shock model

    图 3  δ冲击模型的确信可靠度R(t)

    Figure 3.  Belief reliability R(t) of δ shock model

    表  1  模型的参数值

    Table  1.   Model parameter values

    参数 数值 来源
    σ 1 假设
    σ1 1 假设
    σ2 1 假设
    e 1 假设
    e1 3 假设
    e2 2.7 假设
    H 3 Hao和Yang[23]
    D 10 假设
    δ 0.1 Wang等[24]
    下载: 导出CSV
  • [1] KLUTKE G A, YANG Y.The availability of inspected systems subject to shocks and graceful degradation[J].IEEE Transactions on Reliability, 2002, 51(3):371-374. doi: 10.1109/TR.2002.802891
    [2] WEI H, RONALD G A.Generalized SSI reliability model considering stochastic loading and strength aging degradation[J].IEEE Transactions on Reliability, 2004, 53(1):77-82. doi: 10.1109/TR.2004.823847
    [3] LI W J, PHAM H.An inspection-maintenance model for systems with multiple competing processes[J].IEEE Transaction on Reliability, 2005, 54(2):318-327. doi: 10.1109/TR.2005.847264
    [4] WANG Z L, DU L, HUANG H Z.Reliability modeling for dependent competitive failure processes[C]//Annual Reliability and Maintainability Symposium.Piscataway: IEEE Press, 2008: 279-283.
    [5] PENG H, FENG Q M, COITD W.Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes[J].IIE Transactions, 2011, 43(1):12-22.
    [6] ZADEH L A.Fuzzy sets[J].Information and Control, 1965, 8:338-353. doi: 10.1016/S0019-9958(65)90241-X
    [7] 潘刚, 尚朝轩, 梁玉英, 等.考虑认知不确定的雷达功率放大系统可靠性评估[J].北京航空航天大学学报, 2016, 42(6):1185-1194. doi: 10.13700/j.bh.1001-5965.2015.0390

    PAN G, SHANG C X, LIANG Y Y, et al.Reliability evaluation of radar power amplification system considering epistemic uncertainty[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1185-1194(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0390
    [8] 武月琴, 周泓.N中连续取k好可修系统的模糊可靠性[J].北京航空航天大学学报, 2009, 35(1):52-55. doi: 10.3969/j.issn.1008-2204.2009.01.011

    WU Y Q, ZHOU H.Fuzzy reliability of repairable consecutive k-out-of-n system[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1):52-55(in Chinese). doi: 10.3969/j.issn.1008-2204.2009.01.011
    [9] LIU B D.Why is there a need for uncertainty theory [J].Journal of Uncertain System, 2012, 6(1):3-10. http://www.researchgate.net/publication/228449921_Why_is_there_a_need_for_uncertainty_theory
    [10] LIU B D.Uncertainty theory[M].2rd ed.Berlin:Springer, 2007:205-228.
    [11] LIU B D.Fuzzy process, hybrid process and uncertain process[J].Journal of Uncertain System, 2008, 2(1):3-16.
    [12] LIU B D.Some research problems in uncertainty theory[J].Journal of Uncertain System, 2009, 3(1):3-10. http://www.researchgate.net/publication/228666965_some_research_problems_in_uncertainy_theory
    [13] ZHANG C X, GUO C R.Uncertain block replacement policy with no replacement at failure[J].Journal of Intelligent & Fuzzy Systems, 2014, 27(4):1991-1997. http://dl.acm.org/citation.cfm?id=2684890.2684926
    [14] KE H, YAO K.Block replacement policy with uncertain lifetime[J].Reliability Engineering and System Safety, 2016, 148:119-124. doi: 10.1016/j.ress.2015.12.008
    [15] GAO J W, YAO K, ZHOU J, et al.Reliability analysis of uncertain weighted k-out-of-n systems[J].IEEE Transactions on Fussy Systems, 2018, 26(5):2663-2671. doi: 10.1109/TFUZZ.2018.2806365
    [16] LIU B L, ZHANG Z Q, WEN Y Q.Reliability analysis for complex systems subject to competing failure processes based on chance theoy[J].Applied Mathematical Modelling, 2018, 75:398-413.
    [17] ZHANG Q Y, KANG R, WEN M L.Belief reliability for uncertain random systems[J].IEEE Transactions on Fuzzy Systems, 2018, 26(6):3605-3514. doi: 10.1109/TFUZZ.2018.2838560
    [18] YE Z S, XIE M.Stochastic modelling and analysis of degradation for highly reliable products[J].Applied Stochastic Models in Business and Industry, 2015, 31(1):16-32. doi: 10.1002/asmb.2063
    [19] LIU L, LI X Y, SUN F Q, et al.A general accelerated degradation model based on the Wiener process[J].Materials, 2016, 9(12):981-1000. doi: 10.3390/ma9120981
    [20] LIU B D.Toward uncertain finance theory[J].Journal of Uncertainty Analysis and Applications, 2013, 1(1):1-15. doi: 10.1186/2195-5468-1-1
    [21] LIU B D.Extreme value theorems of uncertain process with application to insurance risk model[J].Soft Computing, 2013(17):549-556. doi: 10.1007/s00500-012-0930-5
    [22] LIU B D.Uncertainty theory:A branch of mathematics for modeling humanuncertainty[M].Berlin:Springer, 2010:133-136.
    [23] HAO S H, YANG J.Dependent competing failure modeling for the GIL subject to partial discharge and air leakage with random degradation initiation time[J].IEEE Transactions on Reliability, 2018, 68(3):1070-1079. http://ieeexplore.ieee.org/document/8514105/
    [24] WANG Q, HE Z Y, LIN S Z, et al.Failure modeling and maintenance decision for GIS equipment subject to degradation and shocks[J].IEEE Transactions on Power Delivery, 2017, 32(2):1079-1088. doi: 10.1109/TPWRD.2017.2655010
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  1012
  • HTML全文浏览量:  233
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 录用日期:  2020-02-29
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答