-
摘要:
采用尺度自适应模拟(SAS)对雷诺数3 900的圆柱绕流展开数值模拟,对比分离涡模拟(DES)的计算结果和已有文献中的实验数据,系统研究了SAS和网格尺度的关联性问题。详细研究了不同网格分辨率和展向计算域的影响,分析了冯卡门尺度在尾迹区的时均湍流统计特性和瞬时分布规律。结果表明:在相同的网格分辨率下,SAS预测的回流区长度小于大涡模拟(LES),表现出较早的剪切层失稳;网格加密后,SAS预测的回流速度增大、雷诺应力峰值降低,计算结果与Lourenco & Shih的实验结果相接近。此外,在相同网格分辨率下改变展向计算域大小对SAS结果的影响很小。对SAS的网格尺度关联分析可以为该方法的工业应用提供指导。
-
关键词:
- 尺度自适应模拟(SAS) /
- 冯卡门尺度 /
- 网格尺度 /
- 钝体绕流 /
- 大分离流动
Abstract:Scale Adaptive Simulation (SAS) is used to study the flow around a circular cylinder at Reynolds number 3 900. SAS predictions are compared with the popular Detached Eddy Simulation (DES) and existing experimental data. The effect of grid resolution and spanwise domain size on SAS model performance are systematically analyzed, time-averaged turbulent statistics and instantaneous distributions of the von Karman length scale in the wake region are discussed in detail. It is concluded that the recirculation length of SAS is smaller than that of Large Eddy Simulation (LES) under the same grid resolution, indicating an earlier onset of instability in shear layer. Velocity magnitude inside the recirculation bubble increases and the peak value of Reynolds stress decreases with grid refinement for SAS simulation, which are in good agreement with the experimental data of Lourenco & Shih. Additionally, changing the spanwise domain size with the same resolution has little effect on SAS predictions. The investigations on the influence of grid resolution and the spanwise domain size on SAS model performance can provide guidance for industrial applications of the SAS method in future.
-
表 1 计算状态
Table 1. Computational setup
编号 湍流模型 网格数量 Lz/D Δz/D Δt×U∞/D A1 DES 137 137 31 π 0.105 0.01 A2 SAS 137 137 31 π 0.105 0.01 B1 DES 193 193 48 π 0.067 0.005 B2 SAS 193 193 24 0.5π 0.067 0.005 B3 SAS 193 193 48 π 0.067 0.005 B4 SAS 193 193 96 2π 0.067 0.005 C1 DES 249 249 61 π 0.052 0.005 C2 SAS 249 249 61 π 0.052 0.005 -
[1] 杜磊, 宁方飞.高亚临界雷诺数圆柱绕流的尺度自适应模拟[J].力学学报, 2014, 46(4):487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404001.htmDU L, NING F F.Scale adaptive simulation of flows around a circular cylinder at high sub-critical Reynolds number[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):487-496(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404001.htm [2] TRAVIN A, SHUR M, SPALART P, et al.On URANS solutions with LES-like behavior[C]//Congress on Computational Methods in Applied Sciences and Engineering, 2004. [3] FUREBY C.Towards the use of large eddy simulation in engineering[J].Progress in Aerospace Sciences, 2008, 44(6):381-396. doi: 10.1016/j.paerosci.2008.07.003 [4] MENTER F R, EGOROV Y.The scale-adaptive simulation method for unsteady turbulent flow predictions.Part 1:Theory and model description[J].Flow, Turbulence and Combustion, 2010, 85(1):113-138. doi: 10.1007/s10494-010-9264-5 [5] EGOROV Y, MENTER F R, LECHNER R, et al.The scale-adaptive simulation method for unsteady turbulent flow predictions.Part 2:Application to complex flows[J].Flow, Turbulence and Combustion, 2010, 85(1):139-165. doi: 10.1007/s10494-010-9265-4 [6] 李钊, 陈海昕, 张宇飞.基于k-kL两方程湍流模式的尺度自适应模拟[J].工程力学, 2016, 33(12):26-35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612003.htmLI Z, CHEN H X, ZHANG Y F.Scale adaptive simulation based on a k-kL two-equation turbulence model[J].Engineering Mechanics, 2016, 33(12):26-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201612003.htm [7] 许常悦, 倪竹青, 孙智, 等.尺度自适应模拟和大涡模拟的关联性分析[J].气体物理, 2018, 14(2):49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201802005.htmXU C Y, NI Z Q, SUN Z, et al.Analysis of the relationships between scale-adaptive and large-eddy simulation[J].Physics of Gases, 2018, 14(2):49-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QTWL201802005.htm [8] 郑玮琳, 阎超.XY-SAS模型中不同网格尺度限制器的影响分析[J].北京航空航天大学学报, 2014, 40(12):1725-1729. doi: 10.13700/j.bh.1001-5965.2013.0742ZHENG W L, YAN C.Influence analysis on grid scale limiter of XY-SAS model[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(12):1725-1729(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0742 [9] 杨振东, 谷正气.基于尺度自适应模拟的汽车天窗风振噪声特性分析[J].机械工程学报, 2016, 12(52):107-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612015.htmYANG Z D, GU Z Q.Analysis of car sunroof buffeting noise based on scale-adaptive simulation[J].Journal of Mechanical Engineering, 2016, 12(52):107-117(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612015.htm [10] NORBERG C.Pressure forces on a circular cylinder in cross flow[C]//International Union of Theoretical and Applied Mechanics Symposium Bluff-Body Wakes, Dynamics and Instabilities.Berlin: Springer, 1993: 275-278. [11] ONG L, WALLACE J.The velocity field of the turbulent very near wake of a circular cylinder[J].Experiments in Fluids, 1996, 20(6):441-453. doi: 10.1007/BF00189383 [12] LOURENCO L M, SHIH C.Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study[Z].Private Communication, 1993. [13] KRAVCHENKO A G, MOIN P.Numerical studies of flow over a circular cylinder at ReD=3 900[J].Physics of Fluids, 2000, 12(2):403-417. doi: 10.1063/1.870318 [14] FRANKE J, FRANK W.Large eddy simulation of the flow past a circular cylinder at ReD=3 900[J].Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(10):1191-1206. doi: 10.1016/S0167-6105(02)00232-5 [15] MANI A, MOIN P, WANG M.Computational study of optical distortions by separated shear layers and turbulent wakes[J].Journal of Fluid Mechanics, 2009, 625(7):273-298. [16] OUVRARD H, KOOBUS B, DERVIEUX A, et al.Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids[J].Computers & Fluids, 2010, 39:1083-1094. [17] WORNOM S, OUVRARD H, SALVETTI M V, et al.Variational multiscale large eddy simulations of the flow past a circular cylinder:Reynolds number effects[J].Computers & Fluids, 2011, 47(1):44-50. [18] DMITRY A L, IVAR S E, KJELL E R.Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OPENFOAM toolbox[J].Flow, Turbulence and Combustion, 2012, 89(4):491-518. doi: 10.1007/s10494-012-9405-0 [19] SHIM Y M, SHARMA R N, RICHARDS P J.Numerical study of the flow over a circular cylinder in the near wake at Reynolds number 3900[C]//39th AIAA Fluid Dynamics Conference.Reston: AIAA, 2013: 2009-4160. [20] PARNAUDEU P, CARLIER J, HEITZ D, et al.Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J].Physics of Fluids, 2008, 20(8):085101. doi: 10.1063/1.2957018 [21] STRELETS M.Detached eddy simulation of massively separated flows[C]//39th AIAA Aerospace Science Meeting and Exhibit.Reston: AIAA, 2001: 1-18. [22] XU C Y, SUN Z, ZHANG Y T, et al.Improvement of the scale-adaptive simulation technique based on a compensated strategy[J].European Journal of Mechanics/B Fluids, 2020, 81:1-14. doi: 10.1016/j.euromechflu.2020.01.002