留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于INBC的周期结构FDTD方法

熊瑛 李小健 王天楠 赵晓凡

熊瑛, 李小健, 王天楠, 等 . 基于INBC的周期结构FDTD方法[J]. 北京航空航天大学学报, 2021, 47(1): 31-37. doi: 10.13700/j.bh.1001-5965.2020.0002
引用本文: 熊瑛, 李小健, 王天楠, 等 . 基于INBC的周期结构FDTD方法[J]. 北京航空航天大学学报, 2021, 47(1): 31-37. doi: 10.13700/j.bh.1001-5965.2020.0002
XIONG Ying, LI Xiaojian, WANG Tiannan, et al. FDTD method for periodic structure based on INBC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 31-37. doi: 10.13700/j.bh.1001-5965.2020.0002(in Chinese)
Citation: XIONG Ying, LI Xiaojian, WANG Tiannan, et al. FDTD method for periodic structure based on INBC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 31-37. doi: 10.13700/j.bh.1001-5965.2020.0002(in Chinese)

基于INBC的周期结构FDTD方法

doi: 10.13700/j.bh.1001-5965.2020.0002
基金项目: 

国防预研项目 41409010201

详细信息
    作者简介:

    熊瑛  女, 博士, 副研究员。主要研究方向:全电及混动车辆的电磁兼容仿真及优化设计技术

    通讯作者:

    熊瑛, E-mail: xiongying__1989@163.com

  • 中图分类号: V221+.3;TB553

FDTD method for periodic structure based on INBC

Funds: 

National Defence Pre-research Foundation 41409010201

More Information
  • 摘要:

    针对周期结构电磁特性参数求解问题,介绍了一种基于网络分析法、矢量拟合法,用来快速求解低剖面周期结构电磁特性参数的内部阻抗边界条件(INBC)与时域有限差分(FDTD)结合的INBC-FDTD计算方法。该方法将金属层的二端口频域阻抗参数曲线先通过矢量拟合法进行有理分式拟合,再对其进行时域变换后嵌入FDTD公式完成对电场、磁场的更新工作。所提方法完整地考虑了在金属层传输的电磁场,其二端口网络阻抗参数全面地考虑了端口之间的互耦问题。

     

  • 图 1  置于两FDTD网格Γ-Γ+之间的低剖面周期结构侧视图

    Figure 1.  Side view of low-profile periodic structure placed between two FDTD grids Γ-and Γ+

    图 2  二维周期结构的计算空间示意图

    Figure 2.  Schematic diagram of computational space for two-dimensional periodic structure

    图 3  十字贴片型FSS

    Figure 3.  Cross patched FSS

    图 4  十字贴片型FSS的反射波和透射波时域波形

    Figure 4.  Reflected wave and transmitted wave of cross patched FSS in time domain

    图 5  不同方法得出的频域散射参数幅度值

    Figure 5.  Amplitude of scattering coefficients in frequency domain obtain by different methods

    图 6  方环形结构的互补型FSS及其单元结构示意图

    Figure 6.  Schematic diagram of complementary FSS with square ring and its unit cell

    图 7  方环形结构互补型FSS的透射波时域波形

    Figure 7.  Transmitted wave of complementary FSS with square ring in time domain

    图 8  透射系数的频域波形比较

    Figure 8.  Comparison of transmission coefficient waves in frequency domain

    表  1  提取得到的十字贴片型FSS结构Y矩阵参数频域函数的等效有理式参数:极点pn及留数rn

    Table  1.   Extracted values of poles (pn) and residues (rn) for Y-matrix coefficients of cross patched FSS

    n pn rn(Y11) rn(Y12/Y21) rn(Y22)
    1 -7.637 7×106 1.582 5×109 -1.581 5×109 1.581 5×109
    2 -3.572 0×1012 -1.812 0×1011 -2.284 1×1010 -4.030 7×1010
    3, 4 -5.499 6×107±5.627 9×1010i 4.988 4×107±4.016 6×104i 1.510 7×105±8.706 3×103i -3.096 3×102±1.185 1×103i
    5, 6 -5.759 2×108±5.660 8×1010i 1.463 5×107±5.061 7×104i 4.470 2×104±2.012 8×102i 1.468 2×102±1.464 3×103i
    7, 8 -7.357 7×107±9.089 0×1010i 2.297 8×108±1.053 0×106i 6.637 8×105±3.934 0×104i 1.191 6×103±9.24×102i
    下载: 导出CSV

    表  2  提取得到的十字贴片型FSS结构Y矩阵参数频域函数的等效有理式参数:d

    Table  2.   Extracted values of d for Y-matrix coefficients of cross patched FSS

    Y d
    Y11 0.050 7
    Y12 0.006 4
    Y21 0.006 4
    Y22 0.011 3
    下载: 导出CSV

    表  3  不同方法的计算参数

    Table  3.   Computational parameters for different methods

    方法 Δt 单元个数(长×宽×高) 时间步 CPU时间
    传统FDTD 16.7 fs 41×41×1 040 60 000 18 d
    亚网格FDTD 0.42 ps(粗网格)
    16.7 fs(细网格)
    41×41×80 3 000 14 h
    INBC-FDTD 0.42 ps 41×41×80 3 000 17 min
    下载: 导出CSV

    表  4  提取得到的方环形结构互补型FSS结构Y矩阵参数频域函数的等效有理式参数:极点pn及留数rn

    Table  4.   Extracted values of poles (pn) and residues (rn) for Y-matrix coefficients of complementary FSS with square ring

    n pn rn(Y11) rn(Y12/Y21) rn(Y22)
    1 -5.589 0×106 2.253 8×109 -1.846 6×109 1.757 6×109
    2 -1.665 6×1012 -1.036 4×1011 -2.825 0×1010 -2.410 3×1011
    3, 4 -1.991 8×108±3.937 3×1010i 4.629 1×106±1.976 9×105i -1.193 3×107±3.071 4×105i 3.011 3×107±3.314 0×105i
    5, 6 -2.030 5×108±3.973 3×1010i 2.964 7×107±1.607 1×105i -7.124 1×107±3.997 4×105i 1.755 8×108±3.953 6×105i
    7, 8 -3.195 7×108±6.586 5×1010i 4.565 9×108±3.611 6×106i -2.665 9×108±2.023 7×106i 1.555 8×108±1.25×106i
    下载: 导出CSV

    表  5  提取得到的方环形结构互补型FSS结构Y矩阵参数频域函数的等效有理式参数:d

    Table  5.   Extracted values of d for the Y-matrix coefficients of complementary FSS with square ring

    Y d
    Y11 0.062 4
    Y12 0.016 9
    Y21 0.016 9
    Y22 0.144 6
    下载: 导出CSV

    表  6  两种方法计算参数的比较

    Table  6.   Comparison of computational parameters for two methods

    方法 Δt 单元个数(长×宽×高) 时间步 CPU时间
    亚网格
    FDTD
    0.42 ps(粗网格)
    16.7 fs(细网格)
    41×41×80 3 000 14 h
    INBC-FDTD 0.42 ps 41×41×80 3 000 17 min
    下载: 导出CSV
  • [1] OKONIEWSKI M.Three-dimensional subgridding algorithm for FDTD[J].IEEE Transactions on Antennas and Propagation, 1997, 45(3):422-427. doi: 10.1109/8.558657
    [2] WHITE M J, ISKONDER M F, HUANG Z.Development of multigrid FDTD code for three dimensional applications[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(10):1512-1517. doi: 10.1109/8.633859
    [3] JURGENS T, TAFLOVE A, UMASHANKAR K, et al.Finite-difference time-domain modeling of curved surfaces[J].IEEE Transactions on Antennas and Propagation, 1992, 40(4):357-366. doi: 10.1109/8.138836
    [4] DEY S, MITTRA R.A locally conformal finite difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects[J].IEEE Microwave and Optical Technology Letters, 1997, 7(9):273-275.
    [5] JUNKIN G.Conformal FDTD modeling of imperfect conductors at millimeter wave bands[J].IEEE Transactions on Antennas and Propagation, 2011, 59(1):199-205. doi: 10.1109/TAP.2010.2090490
    [6] MALONEY J G, SMITH G S.The use of surface impedance concepts in the finite-difference time domain method[J].IEEE Transactions on Antennas and Propagation, 1992, 40(1):38-48. doi: 10.1109/8.123351
    [7] BEGGS J H, LUEBBERS R J, YEE K S, et al.Finite difference time-domain implementation of surface impedance boundary conditions[J].IEEE Transactions on Antennas and Propagation, 1992, 40(1):49-56. doi: 10.1109/8.123352
    [8] KARKKAINEN M K.FDTD surface impedance model for coated conductors[J].IEEE Transactions on Electromagnetic Compatibility, 2004, 46(2):222-233. doi: 10.1109/TEMC.2004.826891
    [9] SHI L, YANG L, MA H, et al.Collocated SIBC FDTD method for coated conductors at oblique incidence[J].Progress in Electromagnetics Research M, 2013, 30:239-252. doi: 10.2528/PIERM13022512
    [10] FELIZIANI M.Subcell FDTD modeling of field penetration through lossy shields[J].IEEE Transactions on Electromagetic Compatibility, 2012, 54(2):299-307. doi: 10.1109/TEMC.2011.2160982
    [11] NAYYERI V, SOLEIMANI M, RAMAHI O.Modeling graphene in the finite-difference time domain method using a surface boundary condition[J].IEEE Transactions on Antennas and Propagation, 2013, 61(8):4176-4182. doi: 10.1109/TAP.2013.2260517
    [12] BOUZIANAS G D, KANTARTZIS N V, YIOULTSIS T V, et al.Consistent study of graphene structures through the direct incorporation of surface conductivity[J].IEEE Transactions on Magnetics, 2014, 50(2):161-164. doi: 10.1109/TMAG.2013.2282332
    [13] GUSTAVSEN B, SEMLYEN A.Rational approximation of frequency domain responses by vector fitting[J].IEEE Transactions on Power Delivery, 1999, 14(3):1052-1061. doi: 10.1109/61.772353
    [14] KUNZ K S, LUEBBERS R J.The finite difference time domain method for electromagnetics[M].Boca Raton:CRC Press, 1993.
    [15] WANG D, CHE W, CHANG Y, et al.A low-profile frequency selective surface with controllable tri-band characteristics[J].IEEE Microwave and Wireless Components Letters, 2013, 12:468-471.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  62
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 录用日期:  2020-02-03
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答