An aircraft detection algorithm in SAR image based on improved Faster R-CNN
-
摘要:
在合成孔径雷达(SAR)图像分析领域,飞机作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出了一种基于改进Faster R-CNN的SAR图像飞机检测算法。制作了一个SAR图像飞机数据集(SAD),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明:相比原始的Faster R-CNN算法,所提改进的Faster R-CNN算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
-
关键词:
- 飞机检测 /
- Faster R-CNN /
- 浅层特征增强 /
- 上下文信息 /
- RoI Align
Abstract:In the field of Synthetic Aperture Radar (SAR) image analysis, as an important target, aircraft detection has attracted more and more attention. In order to solve the problem that traditional aircraft detection algorithms need to design hand-crafted features and have poor robustness, this paper proposes an aircraft detection algorithm based on improved Faster R-CNN. In this paper, a SAR Aircraft Dataset (SAD) is made. With Faster R-CNN as the detection framework, the improved k-means algorithm is used to design a more reasonable prior anchor frame to adapt to the characteristic of aircraft size. Based on the idea of inception module, multiple convolution kernels of different sizes are designed to expand the network width and enhance the expression of shallow features. By analyzing the residual network, the feature-map of Layer5 has a larger receptive field, and feature fusion is carried out after upsampling to make use of more context information. Meanwhile, the RoI Align unit proposed in Mask R-CNN algorithm is introduced to eliminate the mapping deviation between the feature-map and the original image. The experimental results show that, compared with the original Faster R-CNN algorithm, the proposed algorithm improves the average detection accuracy by 7.4% on the SAD, while maintaining a fast detection speed.
-
Key words:
- aircraft detection /
- Faster R-CNN /
- shallow feature enhancement /
- context information /
- RoI Align
-
表 1 飞机目标统计参数
Table 1. Statistical parameters of aircraft target
统计参数 最大值 最小值 平均值 宽度/像素 459 27 87 宽度占比 0.510 0.030 0.097 高度/像素 378 42 81 高度占比 0.630 0.070 0.135 面积/像素 173 502 1 134 7 047 面积占比 0.321 0.002 0.013 表 2 实验结果对比
Table 2. Comparison of experimental results
算法
特征提取
网络AP/% R/% P/% 检测速度/
fpsFaster R-CNN VGG16 81.1 78.1 77.0 16.6 Faster R-CNN ResNet101 82.3 80.2 79.4 13.2 Faster R-CNN+
k-meansResNet101 83.5 81.7 80.8 13.5 本文算法 ResNet101 88.5 89.5 85.9 12.7 注:fps为帧/s。 -
[1] 黎薇萍, 李渝, 段崇棣, 等.一种新的鲁棒CFAR检测器设计方法[J].空间电子技术, 2018(3):61-64. doi: 10.3969/j.issn.1674-7135.2018.03.013LI W P, LI Y, DUAN C L, et al.A new robust CFAR detector design method[J].Space Electronic Technology, 2018(3):61-64(in Chinese). doi: 10.3969/j.issn.1674-7135.2018.03.013 [2] CUI Y, ZHOU G, YANG J, et al.On the iterative censoring for target detection in SAR images[J].IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):641-645. doi: 10.1109/LGRS.2010.2098434 [3] BRUSCH S, LEHNER S, FRITZ T, et al.Ship surveillance with TerraSAR-X[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3):1092-1103. doi: 10.1109/TGRS.2010.2071879 [4] 王彦华, 陈维, 王军福, 等.基于级联CFAR的SAR图像目标快速检测方法[J].现代雷达, 2019, 41(2):21-25. http://www.cnki.com.cn/Article/CJFDTotal-XDLD201902005.htmWANG Y H, CHEN W, WANG J F, et al.Fast target detection method of SAR image based on cascaded CFAR[J].Modern Radar, 2019, 41(2):21-25(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XDLD201902005.htm [5] CHEN S, LI X.A new CFAR algorithm based on variable window for ship target detection in SAR images[J].Signal, Image and Video Processing, 2019, 13:779-786. doi: 10.1007/s11760-018-1408-4 [6] GAO F, XUE X, WANG J, et al.Visual attention model with a novel learning strategy and its application to target detection from SAR images[C]//International Conference on Brain Inspired Cognitive Systems.Berlin: Springer, 2016: 149-160. [7] TU S, SU Y.Fast and accurate target detection based on multiscale saliency and active contour model for high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5729-5744. doi: 10.1109/TGRS.2016.2571309 [8] BENGIO Y, COURVILLE A, VINCENT P.Representation learning:A review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. doi: 10.1109/TPAMI.2013.50 [9] LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single shot multibox detector[C]//European Conference on Computer Vision.Berlin: Springer, 2016: 21-37. [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 779-788. [11] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2017: 6517-6525. [12] REDMON J, FARHADI A.YOLOv3: An incremental improvement[EB/OL].(2018-04-08)[2020-01-01]. [13] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2014: 580-587. [14] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2015: 1440-1448. [15] REN S, HE K M, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems, 2015: 91-99. [16] 常鹏飞, 段云龙.Faster R-CNN模型在遥感图像飞机目标检测中的应用[J].无线电工程, 2019, 49(10):925-929. doi: 10.3969/j.issn.1003-3106.2019.10.016CHANG P F, DUAN Y L.Application of Faster R-CNN model in aircraft target detection in remote sensing image[J].Radio Engineering, 2019, 49(10):925-929(in Chinese). doi: 10.3969/j.issn.1003-3106.2019.10.016 [17] 余东行, 郭海涛, 张保明, 等.级联卷积神经网络的遥感影像飞机目标检测[J].测绘学报, 2019, 48(8):1046-1058. http://www.cnki.com.cn/Article/CJFDTotal-CHXB201908012.htmYU D X, GUO H T, ZHANG B M, et al.Aircraft target detection in remote sensing image using cascaded convolutional neural network[J].Journal of Surveying and Mapping, 2019, 48(8):1046-1058(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CHXB201908012.htm [18] 王思雨, 高鑫, 孙皓, 等.基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J].雷达学报, 2017, 6(2):195-203. doi: 10.12000/JR17009WANG S Y, GAO X, SUN H, et al.Method of aircraft target detection in high resolution SAR image based on convolutional neural network[J].Journal of Radar, 2017, 6(2):195-203(in Chinese). doi: 10.12000/JR17009 [19] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791 [20] IOFFE S, SZEGEDY C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456. [21] HE K M, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2017: 2980-2988. 期刊类型引用(24)
1. 黄润琴,苏珉,刘佳,王涛. 基于小波变换与奇异值分解的飞鸟动态电磁散射特征提取. 广西师范大学学报(自然科学版). 2024(04): 74-89 . 百度学术
2. 刘闪亮,吴仁彪,屈景怡,乔晗,何雨龙. Bi-PPYOLO tiny:一种轻量型的机场无人机检测方法. 安全与环境学报. 2023(02): 480-488 . 百度学术
3. 韩虎虎,祁鑫,王鹤飞,李惠翔,齐吉祥. 基于无人机巡检的光伏面板缺陷识别方法. 电子设计工程. 2023(06): 176-179+184 . 百度学术
4. 薛珊,陈宇超,吕琼莹,曹国华. 基于双支路神经网络的无人机图像识别方法. 计算机仿真. 2023(07): 233-238 . 百度学术
5. 刘佳,徐群玉,陈唯实. 无人机雷达航迹运动特征提取及组合分类方法. 系统工程与电子技术. 2023(10): 3122-3131 . 百度学术
6. 苏志刚,王雪萌. 基于双层特征选择的空中目标分类算法研究. 激光与光电子学进展. 2022(02): 243-251 . 百度学术
7. 睢丙东,苗林星,于国庆. 基于深度学习的无人机目标检测系统. 科技风. 2022(06): 4-6 . 百度学术
8. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 机场探鸟雷达技术发展与应用综述. 航空学报. 2022(01): 184-204 . 百度学术
9. 张虹波,匡银虎. 基于齐次变换的低空无人机防撞导引控制方法. 计算机仿真. 2022(06): 42-46 . 百度学术
10. 何炜琨,柳振明,王晓亮. 微动特征和运动特征融合处理的鸟与旋翼无人机目标辨别方法. 电子测量与仪器学报. 2022(07): 33-43 . 百度学术
11. Weiming TIAN,Linlin FANG,Rui WANG,Weidong LI,Chao ZHOU,Cheng HU. A robust tracking method focusing on target fluctuation and maneuver characteristics. Science China(Information Sciences). 2022(11): 263-280 . 必应学术
12. 刘雷,刘大卫,王晓光,陈俊男,刘东兴. 无人机集群与反无人机集群发展现状及展望. 航空学报. 2022(S1): 4-20 . 百度学术
13. 冯维婷,梁青. 闪烁现象下基于微动补偿的旋转叶片参数估计方法. 信号处理. 2022(12): 2617-2627 . 百度学术
14. 卢晓东,辛佳宁,顾嘉耀,王俊康,程承. 析构时间相关模型的面对称飞行器机动估计. 宇航学报. 2021(02): 167-174 . 百度学术
15. 陈唯实,黄毅峰,陈小龙,卢贤锋,张洁. 基于模型转换频率估计的低空目标分类. 系统工程与电子技术. 2021(04): 927-936 . 百度学术
16. 侯旋,薛飞,陈涛. 无人机目标检测量子多模式识别优化算法. 计算机工程与应用. 2021(07): 228-236 . 百度学术
17. 杨名宇,王浩,王含宇. 基于深度学习与光电探测的无人机防范技术. 液晶与显示. 2021(09): 1323-1330 . 百度学术
18. 苏子康,李春涛,余跃,徐忠楠,王宏伦. 绳系拖曳飞行器高抗扰轨迹跟踪控制. 北京航空航天大学学报. 2021(11): 2234-2248 . 本站查看
19. 屈旭涛,庄东晔,谢海斌. “低慢小”无人机探测方法. 指挥控制与仿真. 2020(02): 128-135 . 百度学术
20. 陈唯实,黄毅峰,陈小龙,卢贤锋. 机场净空区飞鸟与非合作无人机目标识别. 民航学报. 2020(03): 27-33 . 百度学术
21. 陈唯实,黄毅峰,卢贤锋. 多传感器融合的无人机探测技术应用综述. 现代雷达. 2020(06): 15-29 . 百度学术
22. 蒋镕圻,白若楷,彭月平. 低慢小无人机目标探测技术综述. 飞航导弹. 2020(09): 100-105 . 百度学术
23. 陈小龙,陈唯实,饶云华,黄勇,关键,董云龙. 飞鸟与无人机目标雷达探测与识别技术进展与展望. 雷达学报. 2020(05): 803-827 . 百度学术
24. 薛珊,李广青,吕琼莹,毛逸维. 基于卷积神经网络的反无人机系统声音识别方法. 工程科学学报. 2020(11): 1516-1524 . 百度学术
其他类型引用(18)
-