留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Faster R-CNN的SAR图像飞机检测算法

李广帅 苏娟 李义红

李广帅, 苏娟, 李义红等 . 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168. doi: 10.13700/j.bh.1001-5965.2020.0004
引用本文: 李广帅, 苏娟, 李义红等 . 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168. doi: 10.13700/j.bh.1001-5965.2020.0004
LI Guangshuai, SU Juan, LI Yihonget al. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168. doi: 10.13700/j.bh.1001-5965.2020.0004(in Chinese)
Citation: LI Guangshuai, SU Juan, LI Yihonget al. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168. doi: 10.13700/j.bh.1001-5965.2020.0004(in Chinese)

基于改进Faster R-CNN的SAR图像飞机检测算法

doi: 10.13700/j.bh.1001-5965.2020.0004
详细信息
    作者简介:

    李广帅  男, 硕士研究生。主要研究方向:基于深度学习的目标检测

    苏娟  女, 博士, 副教授, 硕士生导师。主要研究方向:遥感图像处理、模式识别等

    通讯作者:

    苏娟, E-mail: suj04@mails.tsinghua.edu.cn

  • 中图分类号: TP751

An aircraft detection algorithm in SAR image based on improved Faster R-CNN

  • 摘要:

    在合成孔径雷达(SAR)图像分析领域,飞机作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出了一种基于改进Faster R-CNN的SAR图像飞机检测算法。制作了一个SAR图像飞机数据集(SAD),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明:相比原始的Faster R-CNN算法,所提改进的Faster R-CNN算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。

     

  • 图 1  Faster R-CNN检测流程

    Figure 1.  Faster R-CNN detection flowchart

    图 2  锚点框示意图

    Figure 2.  Schematic diagram of anchor box

    图 3  VGG16、ResNet101结构示意图

    Figure 3.  Schematic diagram of VGG16 and ResNet101 structure

    图 4  bottleneck结构示意图

    Figure 4.  Schematic diagram of bottleneck structure

    图 5  改进的Faster R-CNN结构

    Figure 5.  Structure of improved Faster R-CNN

    图 6  预设锚点框范围示例

    Figure 6.  Example range of preset anchor box

    图 7  RoI池化、RoI Align示意图

    Figure 7.  Schematic diagram of RoI Pooling and RoI Align

    图 8  VOC数据集中各目标图像数量

    Figure 8.  Number of various target images of VOC dataset

    图 9  飞机目标信息统计直方图

    Figure 9.  Statistical histogram of aircraft target information

    图 10  SAD数据集中部分SAR飞机图像

    Figure 10.  Some SAR aircraft images in SAD dataset

    图 11  不同算法P-R曲线比较

    Figure 11.  P-R curves comparison among different algorithms

    图 12  检测结果对比

    Figure 12.  Comparison of detection results

    表  1  飞机目标统计参数

    Table  1.   Statistical parameters of aircraft target

    统计参数 最大值 最小值 平均值
    宽度/像素 459 27 87
    宽度占比 0.510 0.030 0.097
    高度/像素 378 42 81
    高度占比 0.630 0.070 0.135
    面积/像素 173 502 1 134 7 047
    面积占比 0.321 0.002 0.013
    下载: 导出CSV

    表  2  实验结果对比

    Table  2.   Comparison of experimental results

    算法
    特征提取
    网络
    AP/% R/% P/% 检测速度/
    fps
    Faster R-CNN VGG16 81.1 78.1 77.0 16.6
    Faster R-CNN ResNet101 82.3 80.2 79.4 13.2
    Faster R-CNN+
    k-means
    ResNet101 83.5 81.7 80.8 13.5
    本文算法 ResNet101 88.5 89.5 85.9 12.7
    注:fps为帧/s。
    下载: 导出CSV
  • [1] 黎薇萍, 李渝, 段崇棣, 等.一种新的鲁棒CFAR检测器设计方法[J].空间电子技术, 2018(3):61-64. doi: 10.3969/j.issn.1674-7135.2018.03.013

    LI W P, LI Y, DUAN C L, et al.A new robust CFAR detector design method[J].Space Electronic Technology, 2018(3):61-64(in Chinese). doi: 10.3969/j.issn.1674-7135.2018.03.013
    [2] CUI Y, ZHOU G, YANG J, et al.On the iterative censoring for target detection in SAR images[J].IEEE Geoscience and Remote Sensing Letters, 2011, 8(4):641-645. doi: 10.1109/LGRS.2010.2098434
    [3] BRUSCH S, LEHNER S, FRITZ T, et al.Ship surveillance with TerraSAR-X[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3):1092-1103. doi: 10.1109/TGRS.2010.2071879
    [4] 王彦华, 陈维, 王军福, 等.基于级联CFAR的SAR图像目标快速检测方法[J].现代雷达, 2019, 41(2):21-25. http://www.cnki.com.cn/Article/CJFDTotal-XDLD201902005.htm

    WANG Y H, CHEN W, WANG J F, et al.Fast target detection method of SAR image based on cascaded CFAR[J].Modern Radar, 2019, 41(2):21-25(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XDLD201902005.htm
    [5] CHEN S, LI X.A new CFAR algorithm based on variable window for ship target detection in SAR images[J].Signal, Image and Video Processing, 2019, 13:779-786. doi: 10.1007/s11760-018-1408-4
    [6] GAO F, XUE X, WANG J, et al.Visual attention model with a novel learning strategy and its application to target detection from SAR images[C]//International Conference on Brain Inspired Cognitive Systems.Berlin: Springer, 2016: 149-160.
    [7] TU S, SU Y.Fast and accurate target detection based on multiscale saliency and active contour model for high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):5729-5744. doi: 10.1109/TGRS.2016.2571309
    [8] BENGIO Y, COURVILLE A, VINCENT P.Representation learning:A review and new perspectives[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828. doi: 10.1109/TPAMI.2013.50
    [9] LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single shot multibox detector[C]//European Conference on Computer Vision.Berlin: Springer, 2016: 21-37.
    [10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2016: 779-788.
    [11] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2017: 6517-6525.
    [12] REDMON J, FARHADI A.YOLOv3: An incremental improvement[EB/OL].(2018-04-08)[2020-01-01].http://arxiv.org/abs/1804.02767.
    [13] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE Press, 2014: 580-587.
    [14] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2015: 1440-1448.
    [15] REN S, HE K M, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of Advances in Neural Information Processing Systems, 2015: 91-99.
    [16] 常鹏飞, 段云龙.Faster R-CNN模型在遥感图像飞机目标检测中的应用[J].无线电工程, 2019, 49(10):925-929. doi: 10.3969/j.issn.1003-3106.2019.10.016

    CHANG P F, DUAN Y L.Application of Faster R-CNN model in aircraft target detection in remote sensing image[J].Radio Engineering, 2019, 49(10):925-929(in Chinese). doi: 10.3969/j.issn.1003-3106.2019.10.016
    [17] 余东行, 郭海涛, 张保明, 等.级联卷积神经网络的遥感影像飞机目标检测[J].测绘学报, 2019, 48(8):1046-1058. http://www.cnki.com.cn/Article/CJFDTotal-CHXB201908012.htm

    YU D X, GUO H T, ZHANG B M, et al.Aircraft target detection in remote sensing image using cascaded convolutional neural network[J].Journal of Surveying and Mapping, 2019, 48(8):1046-1058(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-CHXB201908012.htm
    [18] 王思雨, 高鑫, 孙皓, 等.基于卷积神经网络的高分辨率SAR图像飞机目标检测方法[J].雷达学报, 2017, 6(2):195-203. doi: 10.12000/JR17009

    WANG S Y, GAO X, SUN H, et al.Method of aircraft target detection in high resolution SAR image based on convolutional neural network[J].Journal of Radar, 2017, 6(2):195-203(in Chinese). doi: 10.12000/JR17009
    [19] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791
    [20] IOFFE S, SZEGEDY C.Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
    [21] HE K M, GKIOXARI G, DOLLAR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Piscataway: IEEE Press, 2017: 2980-2988.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1070
  • HTML全文浏览量:  206
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-04
  • 录用日期:  2020-05-22
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答