留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BDS/GPS的KBLMS信道补偿多径缓减算法

王晓毓 李灯熬 赵菊敏

王晓毓, 李灯熬, 赵菊敏等 . 基于BDS/GPS的KBLMS信道补偿多径缓减算法[J]. 北京航空航天大学学报, 2021, 47(1): 169-176. doi: 10.13700/j.bh.1001-5965.2020.0008
引用本文: 王晓毓, 李灯熬, 赵菊敏等 . 基于BDS/GPS的KBLMS信道补偿多径缓减算法[J]. 北京航空航天大学学报, 2021, 47(1): 169-176. doi: 10.13700/j.bh.1001-5965.2020.0008
WANG Xiaoyu, LI Deng'ao, ZHAO Juminet al. KBLMS channel compensation multipath mitigation algorithm based on BDS/GPS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 169-176. doi: 10.13700/j.bh.1001-5965.2020.0008(in Chinese)
Citation: WANG Xiaoyu, LI Deng'ao, ZHAO Juminet al. KBLMS channel compensation multipath mitigation algorithm based on BDS/GPS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 169-176. doi: 10.13700/j.bh.1001-5965.2020.0008(in Chinese)

基于BDS/GPS的KBLMS信道补偿多径缓减算法

doi: 10.13700/j.bh.1001-5965.2020.0008
基金项目: 

国家自然科学基金 61772358

国家重点研发计划 2018YFB2200900

详细信息
    作者简介:

    王晓毓  女, 硕士研究生。主要研究方向:卫星信号处理

    李灯熬  男, 博士, 教授, 博士生导师。主要研究方向:空间信息网络及物联网技术

    通讯作者:

    李灯熬, E-mail: lidengao@tyut.edu.cn

  • 中图分类号: TN967.1

KBLMS channel compensation multipath mitigation algorithm based on BDS/GPS

Funds: 

National Natural Science Foundation of China 61772358

National Key R & D Program of China 2018YFB2200900

  • 摘要:

    在全球卫星导航系统(GNSS)中,针对城市峡谷单系统无法定位及信号失锁后重新捕获及跟踪性能表现不佳的问题,提出了一种基于BDS/GPS的卡尔曼最小均方估计(KBLMS)的信道补偿技术。首先,建立双系统模型。其次,设计基于卡尔曼估计的最小均方误差的延迟估计模块,补偿接收信号上的多径失真。最后,设计视距(LOS)最佳估计块以在反馈回路中产生控制误差信号,用于自适应地更新补偿矩阵系数。通过实测数据与实验仿真,分析KBLMS的信道补偿多径缓减算法的性能。结果表明:KBLMS的信道补偿多径缓减技术相较于最小均方(LMS)算法在多径信道中能快速收敛,且码跟踪误差在ENU三个维度误差减少了0.1 chip,载波跟踪误差减少了约0.125 cm,有效降低了多径效应引起的误差,最终残余误差比LMS降低了0.035 chip,说明所提多径缓减算法可以进行更为精准的估计,从而验证了算法的有效性。

     

  • 图 1  基于KBLMS自适应滤波的延迟估计模型

    Figure 1.  Delay estimation model based on KBLMS adaptive filtering

    图 2  实验设备

    Figure 2.  Experimental equipment

    图 3  数据采集

    Figure 3.  Data acquisition

    图 4  卫星天象图

    Figure 4.  Satellite imagery

    图 5  LOS信号估计模块中码跟踪误差对应载噪比

    Figure 5.  Code tracking error corresponding to load-to-noise ratio in LOS signal estimation module

    图 6  LOS信号估计模块的均方根误差和作为步长函数的代价函数变化

    Figure 6.  Root mean square error of LOS signal estimation module and change of cost function as step size function

    图 7  跟踪环路中两种优化算法的收敛性能比较(C/N0=40 dB/Hz, μ=0.017 5)

    Figure 7.  Convergence performance comparison of two optimization algorithms in tracking loop (C/N0= /Hz, μ=0.017 5)

    图 8  信号失锁情况下两种优化算法的跟踪性能比较(C/N0=40 dB/Hz, μ=0.017 5)

    Figure 8.  Tracking performance comparison of two optimization algorithms in the event of loss of signal lock (C/N0=40 dB/Hz, μ=0.017 5)

    图 9  两种优化算法的码跟踪误差和载波跟踪误差比较

    Figure 9.  Comparison of code tracking errors and carrier tracking errors between two optimization algorithms

    图 10  两种优化算法的最终残余误差比较(C/N0=40 dB/Hz, μ=0.017 5)

    Figure 10.  Final residual error comparison of two optimization algorithms (C/N0=40 dB/Hz, μ=0.017 5)

    表  1  实验仿真参数

    Table  1.   Experiment simulation parameter

    参数 数值
    接收机类型 GPS/BDS双模两频点
    频点/MHz L1(1 575.42),B1(1 561.098)
    带宽/MHz 2.046(L1),1.092(B1)
    采样频率/MHz 10
    量化数据/bit 4
    中频信号频率/MHz 2.5
    供电方式/V 5
    设备接口 USB2.0
    天线接口 TNC制接头
    整机功耗/W < 10
    下载: 导出CSV

    表  2  卫星参数

    Table  2.   Satellite parameters

    卫星
    BDS/GPS卫星 B12 38
    G3 43
    G17 38
    G19 40
    G30 41
    PDOP 1.35
    VDOP 1.11
    HDOP 0.77
    注:C/N0为载噪比。
    下载: 导出CSV

    表  3  实验仿真参数设计

    Table  3.   Parameter design of experimental simulation

    参数 数值
    城市 太原
    海拔/m 788
    BDS频率(B1)/MHz 1 561.08±2.06
    GPS频率(L1)/MHz 1 575.42±1.023
    时间/min 3
    下载: 导出CSV

    表  4  实验参数设计

    Table  4.   Design of experimental parameters

    参数 数值
    μ 0.017 5
    40
    下载: 导出CSV
  • [1] 李惟, 朱云龙, 王峰, 等.GNSS多径信号模型及测高方法[J].北京航空航天大学学报, 2018, 44(6):1239-1245. doi: 10.13700/j.bh.1001-5965.2017.0417

    LI W, ZHU Y L, WANG F, et al.GNSS multipath signal model and altimetry method[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1239-1245(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0417
    [2] 廖希, 薛睿, 赵旦峰.一种适用于双卫星系统窄带LMS信道的状态模型[J].西安电子科技大学学报, 2015, 42(1):161-167. doi: 10.3969/j.issn.1001-2400.2015.01.026

    LIAO X, XUE R, ZHAO D F.State modeling of the narrowband LMS channel suitable for dual-satellite systems[J].Journal of Xidian University, 2015, 42(1):161-167(in Chinese). doi: 10.3969/j.issn.1001-2400.2015.01.026
    [3] MILLER S, ZHANG X, SPANIAS A.A new asymmetric correlation kernel for GNSS multipath mitigation[C]//2015 Sensor Signal Processing for Defence, 2015: 15490738.
    [4] JIA Q, WU R B, WANG W Y, et al.Multipath interference mitigation in GNSS via WRELAX[J].GPS Solutions, 2018, 21(2):487-498. doi: 10.1007/s10291-016-0538-9
    [5] CHEN X, DOVIS F, PINI M.An innovative multipath mitigation method using coupled amplitude delay locked loops in GNSS receivers[J].IEEE/ION Position, Location and Navigation Symposium.Piscataway:IEEE Press, 2010:1118-1126. http://ieeexplore.ieee.org/document/5507230/citations
    [6] RUI X, SUN Y B, ZHAO D F.CPM signals for satellite navigation in the S and C bands[J].Sensors, 2015, 15(6):13184-13200. doi: 10.3390/s150613184
    [7] ROST C, WANNINGER L.Carrier phase multipath mitigation based on GNSS signal quality measurements[J].Journal of Applied Geodesy, 2009, 3(2):81-87. http://www.degruyter.com/view/j/jag.2009.3.issue-2/jag.2009.009/jag.2009.009.xml?format=INT
    [8] CANNON M E, LACHAPELLE G, QIU W, et al.Performance analysis of a narrow correlator spacing receiver for precise static GPS positioning[C]//Position Location and Navigation Symposium.Piscataway: IEEE Press, 1994: 355-360.
    [9] DE BAKKER P F, VAN DER MAREL H, TIBERIUS C C J M.Geometry-free undifferenced, single and double differenced analysis of single frequency GPS, EGNOS and GIOVE-A/B measurements[J].GPS Solutions, 2009, 13(4):305-314. doi: 10.1007/s10291-009-0123-6
    [10] SÁNCHEZFERNÁNDEZ M, AGUILERAFORERO M, GARCÍ-AARMADA A.Performance analysis and parameter optimization of DLL and MEDLL in fading multipath environments for next generation navigation receivers[J].IEEE Transactions on Consumer Electronics, 2007, 53(4):1302-1308. doi: 10.1109/TCE.2007.4429216
    [11] TOWNSEND B, WIEBE J, JAKAB A.Results and analysis of using the MEDLL receiver as a multipath meter[C]//Proceedings of the National Technical Meeting of the Institute of Navigation, 2000: 73-79.
    [12] YUAN G, FENG L, TENG L.Analysis of multipath parameter estimation accuracy in MEDLL algorithm[C]//China Satellite Navigation Conference (CSNC) 2013 Proceeding, 2013: 597-606.
    [13] SAHMOUDI M, AMIN M.Fast iterative maximum-likelihood algorithm (FIMLA) for multipath mitigation in the next generation of GNSS receivers[J].IEEE Transactions on Wireless Communications, 2008, 7(11):4362-4374. doi: 10.1109/T-WC.2008.070700
    [14] STAUDER J.Estimation of point light source parameters for object-based coding[J].Signal Processing Image Communication, 1995, 7(4-6):355-379. doi: 10.1016/0923-5965(95)00008-7
    [15] SECO-GRANADO G, FERNANDEZ-RUBIO J A, FERNANDEZ-PRADES C.ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers[J].IEEE Transactions on Signal Processing, 2005, 53(3):1194-1208. doi: 10.1109/TSP.2004.842193
    [16] YAN G, WEI L, LI J, et al.A new iterative method for multipath mitigation[C]//China Satellite Navigation Conference (CSNC) 2015 Proceedings, 2015: 667-676.
    [17] SADRIEH S N, BROUMANDAN A, LACHAPELLE G.Doppler characterization of a mobile GNSS receiver in multipath fading channels[J].Journal of Navigation, 2012, 65(3):477. doi: 10.1017/S037346331200015X
    [18] SOKHANDAN N, BROUMANDAN A, CURRAN J T, et al.Accurate GNSS range estimation in multipath environments using stochastic-gradient-based adaptive filtering[J].Navigation, 2016, 63(1):39-52. doi: 10.1002/navi.126
    [19] CHEN X.Statistical multipath model comparative analysis of different GNSS orbits in static urban canyon environment[J].Advances in Space Research, 2018, 62(5):39-52. http://www.sciencedirect.com/science/article/pii/S027311771830471X
    [20] CHANG H K, SUN Y K, CHAN G P.An adaptive Kalman filtering approach to Fourier analysis for estimating various chirp-type GNSS interference frequencies:Chirp-type GNSS interference frequency tracking[J].Navigation, 2018, 65(1):3-13. doi: 10.1002/navi.217
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  99
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-09
  • 录用日期:  2020-03-13
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答