-
摘要:
升力体式混合飞艇是全球远距离大载重运输的重要选择,随着全球贸易的发展,逐渐成为国内外的研究热点。作为航空宇航技术、新能源技术和高性能材料技术相结合的新概念飞行器,混合飞艇设计过程需对多个学科进行综合考虑和优化。为了将多学科设计优化(MDO)方法引入到混合飞艇的总体设计中,将其分解为能源子系统、气动和推进子系统以及结构和重量子系统。在子系统模型构建的基础上,提出具有自适应能力的基于响应面的并行子空间优化(CSSO-RS)算法,将重量平衡和能量平衡作为实现远距离载重运输的约束条件,并提出爬升、日间巡航、滑翔和夜间巡航的多阶段任务剖面,以充分利用太阳能电池、燃料电池和锂电池的优势,实现混合飞艇的最优化设计。优化结果表明:具有自适应能力的优化算法在精确度和计算效率上均有明显的优势,同时重量分配的结果也为混合飞艇结构轻量化设计和能源系统设计提出了更高的要求。
-
关键词:
- 混合飞艇 /
- 混合能源 /
- 多学科设计优化(MDO) /
- 基于响应面的并行子空间优化(CSSO-RS) /
- 近似模型
Abstract:Lift-type hybrid airship is an important choice of long-distance and large-load transportation. With the development of global trade, it has gradually become a research hotspot at home and abroad. As a new concept aircraft combining aeronautical science and technology, new energy technology and high-performance material technology, multiple disciplines should be considered and optimized in the design process of hybrid airship comprehensively. To introduce the Multidisciplinary Design Optimization (MDO) method into the conceptual design of hybrid airship, it is decomposed into energy subsystem, aerodynamic and propulsion subsystem, and structure and weight subsystem. On the basis of building subsystem model, a Concurrent Subsystem Optimization algorithm based on Response Surface (CSSO-RS) with the self-adaptive ability is put forward. The weight balance and energy balance are set as the constraints to achieve long-distance transportation. Meanwhile, a multi-stage task profile with climb, day cruise, gliding and night cruise is proposed to make full use of solar energy battery, fuel cell and lithium batteries and realize the optimal design of hybrid airship. The optimization results show that the adaptive optimization algorithm has obvious advantages in accuracy and computational efficiency, and the weight distribution results also put forward higher requirements for lightweight design and energy system design of hybrid airships.
-
表 1 混合飞艇优化初始参数
Table 1. Initial parameters of hybrid airship optimization
初始参数 数值 巡航速度v/(m·s-1) 20 囊体材料面密度ρenv/(kg·m-2) 0.2 太阳能电池面密度ρsa/(kg·m-2) 0.3 载荷重量mpayload/kg 1 000 燃料电池能量密度ρESS/(Wh·kg-1) 1 000 电机和螺旋桨功率质量比SPprop/(W·kg-1) 440 推进系统效率ηprop 0.72 燃料电池放电效率ηESS 0.55 表 2 优化结果对比
Table 2. Comparison of optimization results
参数 数值 传统CSSO-RS算法 自适应CSSO-RS算法 等效飞艇长半轴a/m 51.23 48.75 太阳能电池起点位置坐标xs/m 22.35 18.11 混合飞艇体积V/m3 129 797.74 128 009.89 混合飞艇总质量mtotal/kg 22 551.23 21 698.86 燃料电池质量mESS/kg 4 948.79 4 019.28 太阳能电池质量msa/kg 1 487.81 1 554.63 锂电池质量mLi/kg 2 537.72 3 019.44 能量供给Qsup/kWh 4 968.84 4 642.65 等效飞艇短半轴b/m 19.5 19.5 太阳能电池结束位置坐标xe/m 96.32 94.68 太阳能电池面积Asa/m2 3 796.47 3 986.23 能源子系统重量menergy/kg 8 974.32 8 592.95 结构子系统重量mstructure/kg 10 379.59 10 076.42 推进子系统重量mthrust/kg 2 197.32 2 029.49 载荷子系统重量mpayload/kg 1 000 1 000 能量需求Qreq/kWh 4 968.83 4 642.64 -
[1] DONALDSON A, SIMAIAKIS I, LOVEGREN J, et al.Parametric design of low emission hybrid-lift cargo aircraft[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-11. [2] CARICHNER G E, NICOLAI L M.Fundamentals of aircraft and airship design, Volume 2-Airship design and case studies[M].Reston:AIAA, 2013:49-62. [3] AGTE J, GAN T, KUNZI F, et al.Conceptual design of a hybrid lift airship for intra-regional flexible access transport[C]//Proceedings of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2010: 1-16 [4] 孟军辉, 张一, 刘东旭, 等.升力体式浮升混合飞艇设计及参数分析[J].航空学报, 2015, 36(5):1500-1510.MENG J H, ZHANG Y, LIU D X, et al.Design and parameter analysis of liftbody-type buoyancy-lifting hybrid airships[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1500-1510(in Chinese). [5] 糜攀攀, 孟军辉, 吕明云.浮升混合飞艇气动性能及总体参数分析[J].北京航空航天大学学报, 2015, 41(6):1108-1116. doi: 10.13700/j.bh.1001-5965.2014.0404MI P P, MENG J H, LV M Y.Aerodynamic and overall parameters analysis of buoyancy-lifting hybrid airship[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1108-1116(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0404 [6] 刘莉, 杜孟尧, 张晓辉, 等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报, 2016, 37(1):144-162.LIU L, DU M Y, ZHANG X H, et al.Conceptual design and energy management strategy for UAV with hybrid solar and hydrogen energy[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese). [7] ASHFORD R, LEVITT B, MAYER N, et al.1981 LTA technology assessment-past and present[C]//Proceedings of Lighter-than-Air Conference.Reston: AIAA, 1981: 1-42. [8] MITCHELL R.Effectiveness of hybrid airships as cargo airlifters[C]//Proceedings of 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference.Reston: AIAA, 2011: 1-14. [9] ZHANG L C, LV M Y, MENG J H, et al.Conceptual design and analysis of hybrid airships with renewable energy[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018, 232(11):2144-2159. doi: 10.1177/0954410017711726 [10] BROOKE L, BOWN A.Design, analysis, and patterning of inflated lifting body form lta vehicle hulls[C]//Proceedings of 18th AIAA Lighter-Than-Air Systems Technology Conference.Reston: AIAA, 2009: 1-13. [11] 依然.中航工业通飞与法国飞鲸公司签署战略合作协议[J].航空制造技术, 2015(14):18.YI R.AVIC Aeneral Aircraft Company has signed a strategic cooperation agreement with Flying Whales Company in French[J].Aeronautical Manufacturing Technology, 2015(14):18(in Chinese). [12] ZHANG L C, LV M Y, ZHU W Y, et al.Mission-based multidisciplinary optimization of solar-powered hybrid airship[J].Energy Conversion and Management, 2019, 185:44-54. doi: 10.1016/j.enconman.2019.01.098 [13] CERUTI A, VOLOSHIN V, MARZOCCA P.Multi-disciplinary design optimization of unconventional airship configurations with heuristic algorithms[C]//Proceedings of 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston: AIAA, 2013: 1-11. [14] LIANG H, ZHU M, GUO X, et al.Conceptual design optimization of high altitude airship in concurrent subspace optimization[C]//Proceedings of 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Reston: AIAA, 2012: 1-17. [15] SOBIESZCZANSKI-SOBIESKI J.A linear decomposition method for large optimization problems.Blueprint for development: NASA-TM-83248[R].Hampton: NASA Langley Research Center, 1982: 8-15. [16] 余雄庆, 丁运亮.多学科设计优化算法及其在飞行器设计中应用[J].航空学报, 2000, 21(1):1-6. doi: 10.3321/j.issn:1000-6893.2000.01.001YU X Q, DING Y L.Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(1):1-6(in Chinese). doi: 10.3321/j.issn:1000-6893.2000.01.001 [17] 刘明航.基于响应面法的并行子空间优化算法改进研究[J].航空科学技术, 2017, 28(9):51-55.LIU M H.Research on concurrent subspace optimization based on response surface method[J].Aeronautical Science & Technology, 2017, 28(9):51-55(in Chinese). [18] 陈琪锋, 戴金海, 李晓斌.分布式协同进化MDO算法及其在导弹设计中应用[J].航空学报, 2002, 23(3):245-248. doi: 10.3321/j.issn:1000-6893.2002.03.011CHEN Q F, DAI J H, LI X B.Multidisciplinary design optimization based on distributed coevolution-algorithm and application in missile design[J].Acta Aeronautica et Astronautica Sinica, 2002, 23(3):245-248(in Chinese). doi: 10.3321/j.issn:1000-6893.2002.03.011 [19] SELLAR R, BATILL S, RENAUD J.Response surface based, concurrent subspace optimization for multidisciplinary system design[C]//Proceedings of 34th Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 1996: 1-14. [20] 王书河, 何麟书.飞行器多学科设计优化概述[J].宇航学报, 2009, 25(6):697-701.WANG S H, HE L S.The summarization of multidisciplinary design optimization for flight vehicles[J].Journal of Astronautics, 2009, 25(6):697-701(in Chinese). [21] 窦毅若, 刘飞, 张为华.响应面建模方法的比较分析[J].工程设计学报, 2007, 14(5):359-363. doi: 10.3785/j.issn.1006-754X.2007.05.003DOU Y R, LIU F, ZHANG W H.Research on comparative analysis of response surface methods[J].Jonrnal of Engineering Design, 2007, 14(5):359-363(in Chinese). doi: 10.3785/j.issn.1006-754X.2007.05.003 [22] GAO X Z, HOU Z X, GUO Z, et al.Reviews of methods to extract and store energy for solar-powered aircraft[J].Renewable and Sustainable Energy Reviews, 2015, 44:96-108. doi: 10.1016/j.rser.2014.11.025 [23] RAN H, THOMAS R, MAVRIS D.A comprehensive global model of broadband direct solar radiation for solar cell simulation[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 2007: 1-16. [24] ZHANG L, LI J, MENG J, et al.Thermal performance analysis of a high-altitude solar-powered hybrid airship[J].Renewable Energy, 2018, 125:890-906. doi: 10.1016/j.renene.2018.03.016 [25] WANG H, SONG B, ZUO L.Effect of high-altitude airship's attitude on performance of its energy system[J].Journal of Aircraft, 2007, 44(6):2077-2080. doi: 10.2514/1.31505 [26] IQBAL M.An introduction to solar radiation[M].Amsterdam:Elsevier, 2012:28-39. [27] LI J, LV M, TAN D, et al.Output performance analyses of solar array on stratospheric airship with thermal effect[J].Applied Thermal Engineering, 2016, 104:743-750. doi: 10.1016/j.applthermaleng.2016.05.122 [28] MEYERS T, DALE R.Predicting daily insolation with hourly cloud height and coverage[J].Journal of Climate and Applied Meteorology, 1983, 22(4):537-545. doi: 10.1175/1520-0450(1983)022<0537:PDIWHC>2.0.CO;2 [29] LV M, LI J, ZHU W, et al.A theoretical study of rotatable renewable energy system for stratospheric airship[J].Energy Conversion and Management, 2017, 140:51-61. doi: 10.1016/j.enconman.2017.02.069 [30] LV M, YAO Z, ZHANG L, et al.Effects of solar array on the thermal performance of stratospheric airship[J].Applied Thermal Engineering, 2017, 124:22-33. doi: 10.1016/j.applthermaleng.2017.06.018 [31] LI X, FANG X, DAI Q.Research on thermal characteristics of photovoltaic array of stratospheric airship[J].Journal of Aircraft, 2011, 48(4):1380-1386. doi: 10.2514/1.C031295 [32] LIANG H, ZHU M, WU Z.Using cross-validation to design trend function in Kriging surrogate modeling[J].AIAA Journal, 2014, 52(10):2313-2327. doi: 10.2514/1.J052879 [33] ZHANG K S, HAN Z H, SONG B F.Flight performance analysis of hybrid airship:Revised analytical formulation[J].Journal of Aircraft, 2010, 47(4):1318-1330. doi: 10.2514/1.47294 [34] CARRIÓN M, STEIJL R, BARAKOS G N, et al.Analysis of hybrid air vehicles using computational fluid dynamics[J].Journal of Aircraft, 2016, 53(4):1-12. [35] MATSUMOTO H, KUBOTA Y, OHISHI M, et al.Drag on a cylinder with an apple-shaped cross section[J].World Journal of Mechanics, 2016, 6(9):323. doi: 10.4236/wjm.2016.69024 [36] HOERNER S F, BORST H V.Fluid-dynamic lift:Practical information on aerodynamic and hydrodynamic lift[M].Washington:L.A.Hoerner, 1985:96-126. [37] DORRINGTON G E.Drag of spheroid-cone shaped airship[J].Journal of Aircraft, 2006, 43(2):363-371. doi: 10.2514/1.14796