-
摘要:
针对垂直起降固定翼无人机的动力需求特点,提出了一种专用于该类无人机的串联混电系统(S-HES)优化设计方法。首先,建立了旋翼、固定翼及转换模式下的垂直起降固定翼无人机的功率需求模型和基于串联混电系统功率传递路径的混电功率解算方程,给出了计及功率约束、能量约束及电池充电的电池质量解算方法,并在大量统计数据的基础上建立了其他混电部件质量解算方程。其次,使用威兰氏线法建立了考虑发动机工作点变化的燃油消耗模型。使用柯西变异粒子群算法基于各物理数学模型在飞行剖面内的各个飞行阶段展开混电控制参数优化,从而完成垂直起降固定翼无人机的顶层设计要求向串联混电系统最佳供电策略、设计功率及质量分配方案的转化。在城市货运和山区货运2种应用场景下对所提方法进行了验证。最后,分析了优化设计结果对于不同飞行阶段性能要求的敏感性。研究结果表明:所提方法可较好地捕捉垂直起降固定翼无人机任务剖面的调整及各飞行阶段的性能要求变化对串联混电系统优化设计结果的显著影响,对垂直起降固定翼无人机的各类应用场景均具有较好的适应性。
-
关键词:
- 混电系统 /
- 垂直起降固定翼无人机 /
- 垂直起降 /
- 参数优化 /
- 总体设计
Abstract:A new method is proposed, for the optimal design of Series-Hybrid Electric System (S-HES) equipped on the unmanned convertiplane, to cope with the special power demand of this type of new aircraft. The method includes multiple physical and mathematical models to describe the characters of convertiplane's S-HES, such as the power requirement solving model in rotor, fixed-wing, and transition modes, the hybrid power solving model based on S-HES structures, and the battery mass sizing equation considering the power constraint, energy constraint, and battery charging. The mass sizing equations of other S-HES components are also established on large amounts of statistical data, and a fuel consumption analysis model considering the engine operating point variation is built based on the Willans line method. Based on the above physical and mathematical models, the hybrid control parameter optimization is carried out at each flight stage in the flight profile using the Cauchy mutation particle swarm optimization algorithm, and thus the top-level aircraft design demand can be translated into the optimal operating strategies, design power, and mass distribution scheme of S-HES. The proposed method was verified in urban freight and mountain freight application scenarios. The results reveal that the adjustment of the mission profile of the unmanned convertiplane and the performance requirement changes at each flight stage have an important impact on the final optimal S-HES design results, and the proposed method can well capture the impact and has good adaptability to various application scenarios of unmanned convertiplane.
-
表 1 其他S-HES组件质量解算方程
Table 1. Mass solving equation of other S-HES components
组件 质量解算方程 发动机[17] 发电机[18] MGE=0.385(Pge, max+0.44) 能量管理系统 MPMS=0.1(Pge, max ηPMS- PPL)+0.028 6 Pge, max+0.2 Pbatt, chg+0.21 PPL+0.072(Pge, max+ Pbatt, chg+ Pge, max ηPMS) 电驱动器[19-21] MED=0.158(Ued, max/ Ued0, max)0.158 8 Ped, max+0.024(Ped, max+1.309 6) 螺旋桨/旋翼[22] MPR=0.058 6 Nb0.391(DPR Ped, max)0.782 表 2 基本设计要求
Table 2. Basic design requirements
性能要求 数值 旋翼模式:爬升率/(m·s-1) 3 转换模式: 最大起飞推重比 1.2 转换模式:离地高度/m 150 固定翼模式:爬升率/(m·s-1) 3 固定翼模式:巡航速度/(m·s-1) 35 固定翼模式:巡航距离/km 150 其他:机载设备供电/W 150 表 3 设计输入
Table 3. Design input
设计输入 数值 动力组件 效率/% 起飞总重/kg 200 发电机 90 空机质量/kg 80 能量管理系统 90 展弦比 18 电驱动器 86 旋翼数目 8 电池(充电) 90 螺旋桨数目 2 螺旋桨 80 单旋翼桨盘面积/m2 0.51 旋翼模式全机阻力系数 3 零升阻力系数 0.03 奥斯瓦尔德因子 0.68 表 4 城市货运与山区货运剖面差异性设计要求
Table 4. Different design indicators in urban freight and mountain freight profiles
性能要求 城市货运 山区货运 旋翼模式:单次悬停时长/min 1.5 3 固定翼模式:巡航高度/km 0.3 1.8 固定翼模式:实用升限/m 1 000 2 500 表 5 最佳设计功率及质量分配方案(城市货运)
Table 5. Optimal design power and mass distribution scheme (urban freight)
组件 设计功率/kW 质量分配/kg 发动机 7.2 5.15 发电机 6.5 2.67 能量管理系统 6.5 1.7 电池 51.1 34.05 电驱动器 56.8 13.48 螺旋桨/旋翼 2.52 燃油 2.8 表 6 最佳设计功率及质量分配方案(山区货运)
Table 6. Optimal design power and mass distribution scheme (mountain freight)
组件 设计功率/kW 质量分配/kg 发动机 8.93 6.38 发电机 8.04 3.26 能量管理系统 8.04 2.24 电池 49.7 33.13 电驱动器 56.8 13.48 螺旋桨/旋翼 2.52 燃油 3.73 -
[1] SAEED A S, YOUNES A B, ISLAM S, et al. A review on the platform design, dynamic modeling and control of hybrid UAVs[C]//2015 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2015: 806-815. [2] FREDERICKS W J, MCSWAIN R G, BEATON B F, et al. Greased lightning (GL-10) flight testing campaign: NASA/TM-2017-219643[R]. Washington, D.C. : NASA, 2017: 6-11. [3] THAMM H P, BRIEGER N, NEITZKE K P, et al. Songbird-An innovative UAS combining the advantages of fixed wing and multi rotor UAS[C]//The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. London: ISPRS Press, 2015: 345-349. [4] KATZ Y. IAI unveils panther tiltrotor UAV[J]. Janes International Defence Review, 2010, 43(12): 26-27. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204111281956.html [5] KARKLIN K. AeroVironment quantix tail sitter UAV[EB/OL]. [2019-08-12]. https://www.avinc.com/cis/quantix-mapper. [6] FINGER D F, BRAUN C. Case studies in initial sizing for hybrid-electric general aviation aircraft[C]//2018 AIAA Electric Aircraft Technologies Symposium. Reston: AIAA, 2018: 1-22. [7] FINGER D F, BRAUN C. An initial sizing methodology for hybrid-electric light aircraft[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-10. [8] VRIES R D, BROWN M T, VOS R. A preliminary sizing method for hybrid-electric aircraft including aero-propulsive interaction effects[C]//2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-29. [9] FRIEDRICH C, ROBERTSON P A. Design of hybrid-electric propulsion systems for light aircraft[C]//2014 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014: 1-16. [10] HASSANALIAN M, SALAZAR R, ABDELKEFI A. Conceptual design and optimization of a tilt-rotor micro air vehicle[J]. Chinese Journal of Aeronautics, 2019, 32(2): 369-381. doi: 10.1016/j.cja.2018.10.006 [11] RAYMER D P. Aircraft design: A conceptual approach[M]. 5th ed. Reston: AIAA, 2012: 93. [12] LEISHMAN J G. Principles of helicopter aerodynamics[M]. London: Cambridge University Press, 2002: 36. [13] TYAN M, NGUYEN N V, KIM S, et al. Comprehensive preliminary sizing/resizing method for a fixed wing-VTOL electric UAV[J]. Aerospace Science and Technology, 2017, 71: 30-41. doi: 10.1016/j.ast.2017.09.008 [14] STONE H. The T-wing tail-sitter research UAV[C]//2002 Biennial International Powered Lift Conference and Exhibit. Reston: AIAA, 2002: 1-10. [15] DROANDI G, SYAL M, BOWER G. Tiltwing multi-rotor aerodynamic modeling in hover, transition and cruise flight conditions[C]//Proceeding of the 74th Annual Forum & Technology Display, 2018: 11-17. [16] 张学平, 王小兵, 赵阳旭, 等. 基于无人机汽油发动机高度功率特性研究[J]. 小型内燃机与摩托车, 2010, 39(5): 30-34. doi: 10.3969/j.issn.1671-0630.2010.05.008ZHANG X P, WANG X B, ZHAO Y X, et al. Research on static state altitude power characteristics of UAV gasoline engines[J]. Small Internal Combustion Engine and Motorcycle, 2010, 39(5): 30-34(in Chinese). doi: 10.3969/j.issn.1671-0630.2010.05.008 [17] DWYER M. World directory of light aviation[EB/OL]. [2019-08-05]. https://www.flying-pages.com/. [18] HALE D. Sullivan alternators[EB/OL]. [2019-08-15]. http://www.sullivanuv.com/products/alternators/. [19] BAUMANN J. TG series slotless motor kits[EB/OL]. [2019-08-13]. https://www.thingap.com/standard-products/. [20] KOEGLER L. UAS multi-rotor brushless motors[EB/OL]. [2019-08-13]. https://www.kdedirect.com/collections/uas-multi-rotor-brushless-motors. [21] JAY G. Designing unmanned aircraft systems: A comprehensive approach[M]. 2nd ed. Reston: AIAA, 2014: 74-76. [22] ROSKAM J. Airplane aerodynamics and performance[M]. Lawrence: DARcorporation, 2003: 711. [23] MARKEL T, BROOKER A, HENDRICKS T, et al. Advisor: A systems analysis tool for advanced vehicle modeling[J]. Journal of Power Sources, 2002, 110(2): 255-266. doi: 10.1016/S0378-7753(02)00189-1 [24] SORRENTINO M, MAURAMATI F, ARSIE I, et al. Application of willans line method for internal combustion engines scalability towards the design and optimization of eco-innovation solutions: 2015-24-2397[R]. Pennsylvania: SAE International, 2015: 1-11. [25] 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10): 226-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201510047.htmKANG L L, DONG W Y, TIAN J S. Opposition based particle swarm optimization with adaptive Cauchy mutation[J]. Computer Science, 2015, 42(10): 226-231(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201510047.htm [26] MICHAEL S. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151. doi: 10.1080/00401706.1987.10488205