Blocking jamming effect prediction method under multi-frequency in-band radiation environment for spectrum-dependent equipment
-
摘要:
为解决用频装备复杂电磁环境效应准确评估的技术难题,从电磁辐射信号耦合传输的基本理论出发,推导揭示了射频前端线性不良和动态范围不足分别是导致用频装备电磁辐射效应对带内多频电磁辐射干扰场强有效值、幅值敏感的本质原因。在此基础上建立了2类用频装备的带内多频连续波电磁辐射效应模型,提出了通过正弦调幅波(调制深度100%)、单频连续波电磁辐射临界干扰场强有效值之比(
E ame/E sine)确定受试装备电磁辐射敏感类型的方法。E ame/E sine>0.9时,受试装备对干扰场强有效值敏感,0.612 <E ame/E sine < 0.9时,受试装备对干扰场强幅值敏感。通信电台带内双频、三频电磁辐射效应试验验证表明:所提建模预测方法的误差小于10%,能够有效预测用频装备带内多频连续波电磁辐射效应。Abstract:In order to solve the technical problem of accurately evaluating radiation effects of spectrum-dependent equipment in complex electromagnetic environment, based on the basic theory of electromagnetic wave coupling transmission, this paper deduces and reveals that the poor linearity and insufficient dynamic range of RF front-end are the essential reasons why the electromagnetic radiation effect is sensitive to the effective value or amplitude of interference field strength. On this basis, two kinds of electromagnetic radiation effect models are established when the spectrum-dependent equipment is interfered by multi-frequency in-band continuous wave. And the method to judge the electromagnetic radiation sensitivity type of the tested equipment is proposed by the effective value ratio of critical interference field strength (
E ame/E sine) of amplitude modulation wave (modulation depth 100%) and single-frequency continuous wave. WhenE ame/E sine>0.9, the tested equipment is sensitive to the effective value of interference field strength. And when 0.612 <E ame/E sine < 0.9, the tested equipment is sensitive to the amplitude of interference field strength. The dual-frequency and tri-frequency electromagnetic radiation tests are performed on difference communication equipment in this paper. The results show that the error of the forecasting method is less than 10%, and the proposed method can effectively predict electromagnetic radiation effect when the spectrum-dependent equipment is interfered by multi-frequency in-band continuous wave. -
表 1 Eame/Esine对应的归一化场强值和干扰因子
Table 1. Threshold of normalized field strength and interference factor with different Eame/Esine
Eame/Esine 归一化场强值Un 干扰因子α/% 0.66 0.999 3.40 0.68 0.997 4.76 0.70 0.995 6.11 0.72 0.993 7.44 0.74 0.991 8.42 0.76 0.988 9.96 0.78 0.985 11.14 0.80 0.982 12.10 表 2 受试电台正弦调幅波与单频连续波电磁辐射临界干扰场强比较
Table 2. Comparison of electromagnetic radiation critical interference threshold between sine AM wave and single-frequency continuous wave for tested equipment
电台调制方式 Eame/Esine 多频场强敏感类型 CPTCM 0.964 有效值 FM 0.721 幅值 FM 0.986 有效值 AM 0.678 幅值 GMSK 0.637 幅值 表 3 场强有效值敏感型电台带内双频电磁辐射效应测试结果
Table 3. Dual-frequency in-band electromagnetic radiation effect test results of RMS-field-strength sensitivity equipment
工作频率/MHz 干扰频偏/kHz 线性不良多频干扰系数SI测试值 SI均值 60 -20 15 0.950 0.981 1.020 1.057 0.986 0.999 60 -20 10 1.080 1.057 1.057 1.080 1.022 1.059 80 -15 5 1.015 1.007 1.053 0.992 0.948 1.003 80 -10 10 1.105 0.992 0.982 0.952 1.000 1.006 表 4 场强有效值敏感型电台带内三频电磁辐射效应测试结果
Table 4. Tri-frequency in-band electromagnetic radiation effect test results of RMS-field-strength sensitivity equipment
工作频率/MHz 干扰频偏/kHz 线性不良多频干扰系数SI测试值 SI均值 40 -10 40 10 1.075 1.016 1.091 1.052 1.042 1.015 1.052 0.996 60 -20 10 20 0.936 0.949 1.015 0.981 1.009 0.999 1.091 1.091 80 -15 5 20 1.016 1.045 1.030 1.004 1.038 1.065 1.059 1.013 1.069 表 5 工作频率为40 MHz时场强幅值敏感型电台带内双频电磁辐射效应测试结果
Table 5. Dual-frequency in-band electromagnetic radiation effect test results of peak-field-strength sensitivity equipment with fs=40 MHz
单/双频 临界干扰电平/dBm 修正前SⅡ 修正后SⅡ 干扰频率39.994 MHz 干扰频率40.003 MHz 单频 -9.4 -10.7 双频 -11.8 -16.3 1.283 1.148 -12.6 -17.8 1.133 1.015 -13.4 -16.6 1.138 1.016 -14.2 -14.5 1.221 1.09 -15 -14.2 1.193 1.066 -15.8 13.3 1.22 1.092 均值 1.198 1.071 表 6 工作频率为60 MHz时场强幅值敏感型电台带内双频电磁辐射效应测试结果
Table 6. Dual-frequency in-band electromagnetic radiation effect test results of peak-field-strength sensitivity equipment with fs=60 MHz
单/双频 临界干扰电平/dBm 修正前SⅡ 修正后SⅡ 干扰频率59.994 MHz 干扰频率60.003 MHz 单频 -11.4 -9.4 双频 -13.8 -16.7 1.19 1.068 -14.6 -15.6 1.182 1.057 -15.4 -14.6 1.181 1.054 -16.2 -13.7 1.185 1.058 -17 -13.1 1.178 1.052 -17.8 -12.4 1.187 1.062 均值 1.184 1.059 表 7 工作频率为40 MHz时场强幅值敏感型电台带内三频电磁辐射效应测试结果
Table 7. Tri-frequency in-band electromagnetic radiation effect test results of peak-field-strength sensitivity equipment with fs=40 MHz
单/三频 临界干扰电平/dBm 修正前SⅡ 修正后SⅡ 干扰频率39.995 MHz 干扰频率40 MHz 干扰频率40.004 MHz 单频 -4.3 -0.7 -0.7 三频 -13.1 -6.7 -6.7 1.366 1.023 -10.3 -8.9 -6.7 1.391 1.04 -11 -7.7 -7.7 1.356 1.013 -11.3 -6.8 -7.7 1.389 1.039 -11.3 -7.7 -6.8 1.389 1.037 -9.5 -8.7 -8.7 1.346 1.011 -12.3 -8.7 -5.6 1.365 1.024 均值 1.372 1.027 表 8 工作频率为60 MHz时场强幅值敏感型电台带内三频电磁辐射效应测试结果
Table 8. Tri-frequency in-band electromagnetic radiation effect test results of peak-field-strength sensitivity equipment with fs=60 MHz
单/三频 临界干扰电平/dBm 修正前SⅡ 修正后SⅡ 干扰频率59.994 MHz 干扰频率59.997 MHz 干扰频率60.005 MHz 单频 -10.8 -9.4 -6.8 三频 -16.8 -15.4 -16.1 1.345 1.013 -16.8 -16.5 -12.8 1.444 1.073 -18.1 -15.4 -12.8 1.434 1.07 -17.8 -16.4 -12 1.443 1.07 -17.8 -14.8 -13.8 1.43 1.072 -16.3 -16.4 -13.8 1.424 1.062 均值 1.42 1.06 -
[1] 刘尚合, 孙国至. 复杂电磁环境内涵及效应分析[J]. 装备学院学报, 2008, 19(1): 1-5. doi: 10.3783/j.issn.1673-0127.2008.01.001LIU S H, SUN G Z. Analysis of the effects of complex electromagnetic environment[J]. Journal of the Academy of Equipment Command & Technology, 2008, 19(1): 1-5(in Chinese). doi: 10.3783/j.issn.1673-0127.2008.01.001 [2] ARMSTRONG E A. EMC for the functional safety of automobiles-Why EMC testing is insufficient, and what is necessary[C]//IEEE International Symposium on EMC. Piscataway: IEEE Press, 2008: 1-6. [3] IEC. Electromagnetic compatibility (EMC)-Part 4: Testing and measurement techniques-Section 6: Immunity to conducted disturbances, induced by radio frequency fields: IEC 61000-4-6[S]. Geneva: IEC, 1996. [4] U.S. Department of Defense. Requirements for the control of electromagnetic interference characteristics of subsystems and equipment: MIL-STD-461G[S]. Washington, D.C. : U.S. Department of Defense, 2015. [5] U.S. Department of Defense. Electromagnetic environmental effects requirements for system: MIL-STD-464C[S]. Washington, D.C. : U.S. Department of Defense, 2010. [6] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B-2013[S]. 北京: 中国人民解放军总装备部, 2013.PLA General Equipment Department. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems: GJB 151B-2013[S]. Beijing: PLA General Equipment Department, 2013(in Chinese). [7] 中央军委装备发展部. 系统电磁环境效应试验方法: GJB 8848-2016[S]. 北京: 中央军委装备发展部, 2016.Equipment Development Department of Central Military Commission. Electromagnetic environment effects test methods for systems: GJB 8848-2016[S]. Beijing: Equipment Development Department of Central Military Commission, 2016(in Chinese). [8] 任兴荣, 柴常春, 马振洋, 等. 基极注入强电磁脉冲对双极晶体管的损伤效应和机理[J]. 物理学报, 2013, 62(6): 464-469. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201306070.htmREN X R, CHAI C C, MA Z Y, et al. The damage effect and mechanism of bipolar transistors in duced by injection of electromagnetic pulse from the base[J]. Acta Physica Sinica, 2013, 62(6): 464-469(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201306070.htm [9] LU X F, WEI G F, PAN X D, et al. A pulsed differential-mode current injection method for electromagnetic pulse field susceptibility assessment of antenna systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1435-1446. doi: 10.1109/TEMC.2015.2453199 [10] HAGER C E, RISON J D, TAIT G B. Electromagnetic probability-of-effect assessment tool for high-power susceptibility testing[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(4): 1306-1313. doi: 10.1109/TEMC.2016.2551361 [11] CHEN Y H, LI K J, XIE Y H. Bayesian assessment method of device-level electromagnetic pulse effect based on Markov chain Monte Carlo[C]//Asia-Pacific International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2016: 659-661. [12] 李伟, 魏光辉, 王雅平, 等. 某型通信装备带内多频电磁环境生存能力预测[J]. 高电压技术, 2017, 43(8): 2680-2688. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201708032.htmLI W, WEI G H, WANG Y P, et al. Survivability forecasting method for typical communication equipment under the in-band multi-frequency electromagnetic environment[J]. High Voltage Engineering, 2017, 43(8): 2680-2688(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201708032.htm [13] 李伟, 魏光辉, 潘晓东, 等. 复杂电磁环境下通信装备干扰预测方法[J]. 电子与信息学报, 2017, 39(11): 2782-2789. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201711033.htmLI W, WEI G H, PAN X D, et al. Interference prediction method of communication equipment under complex electromagnetic environment[J]. Journal of Electronics and Information Technology, 2017, 39(11): 2782-2789(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201711033.htm [14] LI W, WEI G H, PAN X D, et al. Electromagnetic compatibility prediction method under the multifrequency in-band interference environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(2): 520-528. doi: 10.1109/TEMC.2017.2720961 [15] POISEL R. Modern communications jamming principles and techniques[M]. Norwood: Artech House, 2011.