留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种连翼飞行器气动和飞行力学迭代仿真方法

蔡玉红 刘刚 洪冠新

蔡玉红, 刘刚, 洪冠新等 . 一种连翼飞行器气动和飞行力学迭代仿真方法[J]. 北京航空航天大学学报, 2021, 47(4): 779-791. doi: 10.13700/j.bh.1001-5965.2020.0022
引用本文: 蔡玉红, 刘刚, 洪冠新等 . 一种连翼飞行器气动和飞行力学迭代仿真方法[J]. 北京航空航天大学学报, 2021, 47(4): 779-791. doi: 10.13700/j.bh.1001-5965.2020.0022
CAI Yuhong, LIU Gang, HONG Guanxinet al. Aerodynamic and flight dynamic iterative simulation method of a joined wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 779-791. doi: 10.13700/j.bh.1001-5965.2020.0022(in Chinese)
Citation: CAI Yuhong, LIU Gang, HONG Guanxinet al. Aerodynamic and flight dynamic iterative simulation method of a joined wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 779-791. doi: 10.13700/j.bh.1001-5965.2020.0022(in Chinese)

一种连翼飞行器气动和飞行力学迭代仿真方法

doi: 10.13700/j.bh.1001-5965.2020.0022
详细信息
    作者简介:

    蔡玉红 男, 博士研究生。主要研究方向: 飞行器设计、气动计算、飞行力学与飞行安全

    刘刚 男, 博士, 副教授, 硕士生导师。主要研究方向: 飞行力学与飞行安全、动力学与控制

    洪冠新 女, 博士, 教授, 博士生导师。主要研究方向: 大气扰动、舰载机起降动力学、飞行力学与飞行安全、动力学与控制

    通讯作者:

    刘刚, E-mail: lg@buaa.edu.cn

  • 中图分类号: V212.12

Aerodynamic and flight dynamic iterative simulation method of a joined wing aircraft

More Information
  • 摘要:

    根据连翼布局飞行器气动力和力矩的分布特点,建立了面向其气动部件的飞行力学数学模型。将计算流体力学(CFD)和飞行力学仿真结合,采用时间步长离散,建立了一个能通过气动计算和飞行力学相互迭代来完成仿真全过程的面向连翼布局飞行器气动部件的仿真平台,并且在仿真过程中能全程监测所有部件的气动、动力学、姿态和航迹参数的变化。通过该仿真平台对不同输入信号作用下的动力学响应分析了连翼布局飞行器纵向和横侧向的动力学特性。仿真分析结果表明:该连翼布局飞行器纵向具备静稳定性,但横侧向不具备静稳定性。同时,横向和航向运动耦合明显,符合荷兰滚运动偏航及侧滑振荡明显的主要特征。所提方法可为了解连翼布局飞行器本体及飞行动力学响应特性、飞行品质和飞行安全研究等工作提供分析基础。

     

  • 图 1  连翼布局飞行器几何模型及坐标系定义

    Figure 1.  Joined wing aircraft's geometry model and coordinate system definition

    图 2  连翼布局飞行器气动计算和飞行力学仿真平台流程

    Figure 2.  Flowchart of aerodynamic calculation and flight dynamic simulation platform for joined wing aircraft

    图 3  连翼布局飞行器气动计算和飞行力学联合仿真流程

    Figure 3.  Joined wing aircraft's aerodynamic calculation and flight dynamic integrated simulation process

    图 4  连翼布局飞行器面网格

    Figure 4.  Joined wing aircraft surface mesh

    图 5  连翼布局飞行器气动计算验证性算例

    Figure 5.  Joined wing aircraft aerodynamic calculation verification cases

    图 6  升降舵阶跃信号输入下的迭代仿真平台和小扰动线性化动力学响应对比

    Figure 6.  Comparison of dynamic responses of iterative simulation platform and small disturbance linearization with elevator step signal input

    图 7  迭代仿真平台无输入信号时的动力学响应

    Figure 7.  Dynamic response of iterative simulation platform without input signal

    图 8  迭代仿真平台升降舵脉冲信号输入时的动力学响应

    Figure 8.  Dynamic response of iterative simulation platform with elevator pulse signal input

    图 9  迭代仿真平台升降舵阶跃信号输入时的动力学响应

    Figure 9.  Dynamic response of iterative simulation platform with elevator step signal input

    图 10  升降舵脉冲输入下连翼布局飞行器各个气动部件横侧向力矩系数随时间的变化关系(S=1 m2, cA=1 m)

    Figure 10.  Time history of joined wing aircraft's aerodynamic component lateral moment coefficients under elevator pulse input (S=1 m2, cA=1 m)

    表  1  定直平飞配平初始状态参数初值

    Table  1.   Trimmed parameter values of straightforward and level flight initial condition

    参数 数值
    α 0.0780802
    β 0
    u 98.345454
    v 0
    w 7.6944834
    p 0
    q 0
    r 0
    φ 0.001084
    θ 0.078080
    ψ 0
    μ 0.001081
    γ 0
    χ 9.927×10-4
    ue 98.64595
    ve 0.097925
    we 0
    Xe 0
    Ye 0
    Ze 3000.0
    m 6942.922
    δe 0.220958
    δT 0.400235
    δa 6.5767×10-4
    δr -0.001217
    Err_D -9.0949×10-13
    Err_C 1.56319×10-13
    Err_L 4.77485×10-13
    Err_Lroll -8.8818×10-16
    Err_M 6.82121×10-13
    Err_N 0
    下载: 导出CSV

    表  2  升降舵偏转对连翼布局飞行器各个气动部件的影响

    Table  2.   Elevator deflection effects on joined wing aircraft's aerodynamic components

    气动部件 Cd Cc CL CLroll Cm Cn
    前翼 0.0037 0 0.0173 0 0.0159 0
    后翼 0.0025 0 0.0429 0 -0.0354 0
    连接部 0.00001 0 0 0 0.00001 0
    尾翼 0.4169 0 1.2078 0 -8.0913 0
    机身 0.0574 0 0.0578 0 0.1087 0
    下载: 导出CSV

    表  3  副翼偏转对连翼布局飞行器各个气动部件的影响

    Table  3.   Aileron deflection effects on joined wing aircraft's aerodynamic components

    气动部件 Cd Cc CL CLroll Cm Cn
    前翼 0.0018 0.0054 -0.0014 -0.4208 0.0062 -0.0109
    后翼 0.5108 0.0451 -0.0252 -6.4906 0.0377 0.308
    连接部 0.0004 -0.0338 -0.0003 0.0001 0.0008 0.0596
    尾翼 0.0001 0.0005 -0.0035 0.012 0.0212 -0.0034
    机身 0.0032 0.1007 0.0186 -0.024 -0.0982 -0.3187
    下载: 导出CSV

    表  4  方向舵偏转对连翼布局飞行器各个气动部件的影响

    Table  4.   Rudder deflection effects on joined wing aircraft's aerodynamic components

    气动部件 Cd Cc CL CLroll Cm Cn
    前翼 0.0013 0.0011 0.0039 -0.0059 0.0039 -0.0026
    后翼 0.0005 0.0029 0.0144 -0.0043 -0.0294 -0.0007
    连接部 0.0003 0.0012 -0.0002 0.0006 0.0007 -0.0016
    尾翼 0.1962 0.0058 0.0118 0.3097 -0.068 -0.0348
    机身 0.0838 0.6954 0.0238 0.4123 -0.0071 -6.6195
    下载: 导出CSV

    表  5  定直平飞初始边界条件

    Table  5.   Straightforward and level flight initial boundary conditions

    参数 数值
    迎角/(°) 4.474
    来流速度/(m·s-1) 98.646
    温度/K 268.7
    高度/m 3 000
    大气密度/(kg·m-3) 0.909 3
    下载: 导出CSV
  • [1] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations: A concept from the past, an opportunity for the future[J]. Progress in Aerospace Science, 2016(87): 1-93. http://www.sciencedirect.com/science/article/pii/S0376042116300471
    [2] 王延奎, 单继祥, 田伟, 等. 联翼布局俯仰力矩非线性变化特性的数值模拟[J]. 北京航空航天大学学报, 2012, 38(7): 862-866. https://bhxb.buaa.edu.cn/CN/abstract/abstract12326.shtml

    WANG Y K, SHAN J X, TIAN W, et al. Investigation on non-linear characteristic of pitching moment of joined wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 862-866(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12326.shtml
    [3] SUN J, WANG H, ZHOU Z, et al. Aerodynamic numerical analysis of the low Reynolds number diamond joined-wing configuration unmanned aerial vehicle[J]. International Journal of Aeronautical and Space Sciences, 2018, 19: 544-562. doi: 10.1007/s42405-018-0072-9
    [4] 孙俊磊, 王和平, 周洲, 等. 菱形连翼布局俯仰力矩非线性特性数值分析[J]. 北京航空航天大学学报, 2017, 43(8): 1567-1576. doi: 10.13700/j.bh.1001-5965.2016.0584

    SUN J L, WANG H P, ZHOU Z, et al. Numerical analysis of pitching moment non-linear characteristics of diamond joined-wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1567-1576(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0584
    [5] 楚亮, 马东立, 张朔, 等. 一种联结翼布局气动特性的求解模型[J]. 航空学报, 2010, 31(5): 909-913. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005006.htm

    CHU L, MA D L, ZHANG S, et al. Solution model for aerodynamic characteristics of joined wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 909-913(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005006.htm
    [6] GALLMAN J W, KROOI M. Structural optimization for joined-wing synthesis[J]. Journal of Aircraft, 1996, 33(1): 214-223. doi: 10.2514/3.46924
    [7] ROBERTS R, CANFIELD R. Sensor-craft structural optimization and analytical certification[C]//Proceedings of the 44th AIAA Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1458.
    [8] 张波成, 万志强, 杨超. 连翼布局飞行器飞行载荷与颤振分析[J]. 工程力学, 2010, 27(8): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008040.htm

    ZHANG B C, WAN Z Q, YANG C. Flight loads and flutter analysis of the joined wing aircraft[J]. Engineering Mechanics, 2010, 27(8): 229-233(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008040.htm
    [9] BOND V L, CANFIELD R A, SULEMAN A, et al. Aeroelastic scaling of a joined wing for nonlinear geometric stiffness[J]. AIAA Journal, 2012, 50(3): 513-522. doi: 10.2514/1.41139
    [10] KIM Y I, PARK G J, KOLONAY R M, et al. Nonlinear response structural optimization of a joined wing using equivalent loads[J]. AIAA Journal, 2008, 46(11): 2703-2713. doi: 10.2514/1.33428
    [11] KIM Y I, PARK G J, KOLONAY R M, et al. Nonlinear dynamic response structural optimization of a joined-wing using equivalent static loads[J]. Journal of Aircraft, 2009, 46(3): 821-831. doi: 10.2514/1.36762
    [12] CAJA R, SCHOLZ D. Box wing flight dynamics in the stage of conceptual aircraft design[EB/OL]. [2019-10-12]. http://www.dglr.delpublikationen/2012/281383.pdf.
    [13] ANSREWS S, PRERZ R. Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization[J]. Aerospace Science and Technology, 2018, 79(8): 336-351. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110713215.html
    [14] SOUSA A, RIBEIRO F, PAULA A A D. Box wing longitudinal flight quality evaluation[C]//Proceedings of the AIAA Aviation Forum. Reston: AIAA, 2019: 17-21.
    [15] OLIVIERO F, ZANETTI D, CIPOLLA V. Flight dynamics model for preliminary design of PrandtlPlane wing configuration with sizing of the control surfaces[J]. Aerotecnica Missili & Spazi, 2016, 95(10): 201-210. http://www.researchgate.net/publication/320934571_Flight_dynamics_model_for_preliminary_design_of_PrandtlPlane_wing_configuration_with_sizing_of_the_control_surfaces
    [16] CUNHA B. Development of control strategies for the joined-wing aircraft[D]. Lisbon: Technical University of Lisbon, 2011: 9-26.
    [17] MCGHEE R, BEASLEY W. Effects of the thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications: TM X-72843[R]. Washington, D.C. : NASA Langley Research Center, 1976.
    [18] YUE T, WANG L, AI J. Longitudinal linear parameter varying modeling and simulation of morphing aircraft[J]. Journal of Aircraft, 2013, 50(6): 1673-1683. doi: 10.2514/1.C031316
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  912
  • HTML全文浏览量:  88
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 录用日期:  2020-02-14
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答