Aerodynamic and flight dynamic iterative simulation method of a joined wing aircraft
-
摘要:
根据连翼布局飞行器气动力和力矩的分布特点,建立了面向其气动部件的飞行力学数学模型。将计算流体力学(CFD)和飞行力学仿真结合,采用时间步长离散,建立了一个能通过气动计算和飞行力学相互迭代来完成仿真全过程的面向连翼布局飞行器气动部件的仿真平台,并且在仿真过程中能全程监测所有部件的气动、动力学、姿态和航迹参数的变化。通过该仿真平台对不同输入信号作用下的动力学响应分析了连翼布局飞行器纵向和横侧向的动力学特性。仿真分析结果表明:该连翼布局飞行器纵向具备静稳定性,但横侧向不具备静稳定性。同时,横向和航向运动耦合明显,符合荷兰滚运动偏航及侧滑振荡明显的主要特征。所提方法可为了解连翼布局飞行器本体及飞行动力学响应特性、飞行品质和飞行安全研究等工作提供分析基础。
-
关键词:
- 连翼布局飞行器 /
- 计算流体力学(CFD) /
- 飞行动力学 /
- 动力学特性 /
- 仿真平台
Abstract:An aerodynamic component-oriented flight dynamic model of joined wing aircraft was established based on the joined wing aircraft aerodynamic force and moment distribution characteristic, and a simulation platform is established by combining the computational fluid dynamics and flight dynamic simulation method. The entire simulation is spatially discretized with time steps, and is executed by iterating Computational Fluid Dynamics (CFD) calculation along with the above joined wing aircraft flight dynamic model at each time step. Moreover, the platform is able to output the change of variables of interest, such as aerodynamics, mechanics, attitude and the space track of all components throughout the entire simulation process. Based on the dynamic response of the platform to different input signals, the longitudinal and lateral dynamic characteristics of the joined wing aircraft are analyzed. The simulation results show that the joined wing aircraft is longitudinally stable, but is not laterally stable. Lateral and directional motion couple clearly, and the yaw and side slip motion oscillations are in line with the main characteristics of the Dutch roll. The developed platform can provide a useful guideline for investigating the ontology system model, flight quality, flight safety analysis and flight dynamic response characteristics of the joined wing aircraft.
-
表 1 定直平飞配平初始状态参数初值
Table 1. Trimmed parameter values of straightforward and level flight initial condition
参数 数值 α 0.0780802 β 0 u 98.345454 v 0 w 7.6944834 p 0 q 0 r 0 φ 0.001084 θ 0.078080 ψ 0 μ 0.001081 γ 0 χ 9.927×10-4 ue 98.64595 ve 0.097925 we 0 Xe 0 Ye 0 Ze 3000.0 m 6942.922 δe 0.220958 δT 0.400235 δa 6.5767×10-4 δr -0.001217 Err_D -9.0949×10-13 Err_C 1.56319×10-13 Err_L 4.77485×10-13 Err_Lroll -8.8818×10-16 Err_M 6.82121×10-13 Err_N 0 表 2 升降舵偏转对连翼布局飞行器各个气动部件的影响
Table 2. Elevator deflection effects on joined wing aircraft's aerodynamic components
气动部件 Cd Cc CL CLroll Cm Cn 前翼 0.0037 0 0.0173 0 0.0159 0 后翼 0.0025 0 0.0429 0 -0.0354 0 连接部 0.00001 0 0 0 0.00001 0 尾翼 0.4169 0 1.2078 0 -8.0913 0 机身 0.0574 0 0.0578 0 0.1087 0 表 3 副翼偏转对连翼布局飞行器各个气动部件的影响
Table 3. Aileron deflection effects on joined wing aircraft's aerodynamic components
气动部件 Cd Cc CL CLroll Cm Cn 前翼 0.0018 0.0054 -0.0014 -0.4208 0.0062 -0.0109 后翼 0.5108 0.0451 -0.0252 -6.4906 0.0377 0.308 连接部 0.0004 -0.0338 -0.0003 0.0001 0.0008 0.0596 尾翼 0.0001 0.0005 -0.0035 0.012 0.0212 -0.0034 机身 0.0032 0.1007 0.0186 -0.024 -0.0982 -0.3187 表 4 方向舵偏转对连翼布局飞行器各个气动部件的影响
Table 4. Rudder deflection effects on joined wing aircraft's aerodynamic components
气动部件 Cd Cc CL CLroll Cm Cn 前翼 0.0013 0.0011 0.0039 -0.0059 0.0039 -0.0026 后翼 0.0005 0.0029 0.0144 -0.0043 -0.0294 -0.0007 连接部 0.0003 0.0012 -0.0002 0.0006 0.0007 -0.0016 尾翼 0.1962 0.0058 0.0118 0.3097 -0.068 -0.0348 机身 0.0838 0.6954 0.0238 0.4123 -0.0071 -6.6195 表 5 定直平飞初始边界条件
Table 5. Straightforward and level flight initial boundary conditions
参数 数值 迎角/(°) 4.474 来流速度/(m·s-1) 98.646 温度/K 268.7 高度/m 3 000 大气密度/(kg·m-3) 0.909 3 -
[1] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations: A concept from the past, an opportunity for the future[J]. Progress in Aerospace Science, 2016(87): 1-93. http://www.sciencedirect.com/science/article/pii/S0376042116300471 [2] 王延奎, 单继祥, 田伟, 等. 联翼布局俯仰力矩非线性变化特性的数值模拟[J]. 北京航空航天大学学报, 2012, 38(7): 862-866. https://bhxb.buaa.edu.cn/CN/abstract/abstract12326.shtmlWANG Y K, SHAN J X, TIAN W, et al. Investigation on non-linear characteristic of pitching moment of joined wing configuration aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(7): 862-866(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12326.shtml [3] SUN J, WANG H, ZHOU Z, et al. Aerodynamic numerical analysis of the low Reynolds number diamond joined-wing configuration unmanned aerial vehicle[J]. International Journal of Aeronautical and Space Sciences, 2018, 19: 544-562. doi: 10.1007/s42405-018-0072-9 [4] 孙俊磊, 王和平, 周洲, 等. 菱形连翼布局俯仰力矩非线性特性数值分析[J]. 北京航空航天大学学报, 2017, 43(8): 1567-1576. doi: 10.13700/j.bh.1001-5965.2016.0584SUN J L, WANG H P, ZHOU Z, et al. Numerical analysis of pitching moment non-linear characteristics of diamond joined-wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1567-1576(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0584 [5] 楚亮, 马东立, 张朔, 等. 一种联结翼布局气动特性的求解模型[J]. 航空学报, 2010, 31(5): 909-913. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005006.htmCHU L, MA D L, ZHANG S, et al. Solution model for aerodynamic characteristics of joined wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 909-913(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005006.htm [6] GALLMAN J W, KROOI M. Structural optimization for joined-wing synthesis[J]. Journal of Aircraft, 1996, 33(1): 214-223. doi: 10.2514/3.46924 [7] ROBERTS R, CANFIELD R. Sensor-craft structural optimization and analytical certification[C]//Proceedings of the 44th AIAA Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1458. [8] 张波成, 万志强, 杨超. 连翼布局飞行器飞行载荷与颤振分析[J]. 工程力学, 2010, 27(8): 229-233. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008040.htmZHANG B C, WAN Z Q, YANG C. Flight loads and flutter analysis of the joined wing aircraft[J]. Engineering Mechanics, 2010, 27(8): 229-233(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008040.htm [9] BOND V L, CANFIELD R A, SULEMAN A, et al. Aeroelastic scaling of a joined wing for nonlinear geometric stiffness[J]. AIAA Journal, 2012, 50(3): 513-522. doi: 10.2514/1.41139 [10] KIM Y I, PARK G J, KOLONAY R M, et al. Nonlinear response structural optimization of a joined wing using equivalent loads[J]. AIAA Journal, 2008, 46(11): 2703-2713. doi: 10.2514/1.33428 [11] KIM Y I, PARK G J, KOLONAY R M, et al. Nonlinear dynamic response structural optimization of a joined-wing using equivalent static loads[J]. Journal of Aircraft, 2009, 46(3): 821-831. doi: 10.2514/1.36762 [12] CAJA R, SCHOLZ D. Box wing flight dynamics in the stage of conceptual aircraft design[EB/OL]. [2019-10-12]. http://www.dglr.delpublikationen/2012/281383.pdf. [13] ANSREWS S, PRERZ R. Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization[J]. Aerospace Science and Technology, 2018, 79(8): 336-351. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110713215.html [14] SOUSA A, RIBEIRO F, PAULA A A D. Box wing longitudinal flight quality evaluation[C]//Proceedings of the AIAA Aviation Forum. Reston: AIAA, 2019: 17-21. [15] OLIVIERO F, ZANETTI D, CIPOLLA V. Flight dynamics model for preliminary design of PrandtlPlane wing configuration with sizing of the control surfaces[J]. Aerotecnica Missili & Spazi, 2016, 95(10): 201-210. http://www.researchgate.net/publication/320934571_Flight_dynamics_model_for_preliminary_design_of_PrandtlPlane_wing_configuration_with_sizing_of_the_control_surfaces [16] CUNHA B. Development of control strategies for the joined-wing aircraft[D]. Lisbon: Technical University of Lisbon, 2011: 9-26. [17] MCGHEE R, BEASLEY W. Effects of the thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications: TM X-72843[R]. Washington, D.C. : NASA Langley Research Center, 1976. [18] YUE T, WANG L, AI J. Longitudinal linear parameter varying modeling and simulation of morphing aircraft[J]. Journal of Aircraft, 2013, 50(6): 1673-1683. doi: 10.2514/1.C031316