Reliability and sensitivity analysis of relief valve mechanism of aircraft door considering wear
-
摘要:
泄压阀机构是飞机舱门的重要组成部分,对维持飞机正常安全运行起到重要作用。在ADAMS软件中建立了飞机舱门泄压阀机构多体动力学仿真模型,研究销轴发生以磨损为主要形式的性能退化时,对泄压阀机构定位精度的影响。建立了泄压阀机构定位精度的功能函数,引入主动学习Kriging代理模型,挑选符合学习准则的点提高代理模型精度。采用Monte Carlo方法计算了不同磨损次数下泄压阀机构的失效概率与3种全局灵敏度指标的变化规律,并给出了不同阈值情况下失效概率和基于失效概率的全局灵敏度指标的变化规律。结果表明:在不同磨损次数下,对于磨损量较大的销轴,其全局灵敏度指标值也较大,并且各项指标随磨损次数的变化规律存在差异。
Abstract:As an important part of the aircraft door, the relief valve mechanism plays an important role in maintaining the normal and safe operation of the aircraft. In this paper, the multi-body dynamical model of the relief valve mechanism is built in ADAMS to study the effect of pin wear on positioning accuracy. The performance function of the positioning accuracy of the mechanism is established. The active Kriging model is introduced to find samples points which can obviously improve the fitting accuracy according to learning criteria. The Monte Carlo method is used to estimate failure probability and three sensitivity indices at different wear times, and the change rules of failure probability and failure probability based global sensitivity indices under different thresholds have been studied. The results show that under different wear times, the global sensitivity indices of a pin with a larger wear amount are also larger, and there are differences in the changes of various indices with the wear times.
-
Key words:
- aircraft door /
- Kriging model /
- reliability /
- global sensitivity /
- motion accuracy
-
表 1 30 000次磨损时输入变量概率分布信息
Table 1. Probability distribution information of input variables at 30 000 times of wear
变量 分布类型 均值/mm 变异系数 X1 正态分布 0.255 0.1 X2 正态分布 0.065 0.1 X3 正态分布 0.074 0.1 X4 正态分布 0.101 0.1 X5 正态分布 0.117 0.1 -
[1] 孙中超, 喻天翔, 崔为民, 等. 销轴间隙对连杆机构运动精度的重要性测度分析[J]. 中国机械工程, 2014, 25(21): 2874-2879. doi: 10.3969/j.issn.1004-132X.2014.21.007SUN Z C, YU T X, CUI W M, et al. Importance measure of revolute joint clearance about motion accuracy of linkage mechanism[J]. China Mechanical Engineering, 2014, 25(21): 2874-2879(in Chinese). doi: 10.3969/j.issn.1004-132X.2014.21.007 [2] 张娟, 王艳艳. 起落架收放机构时变可靠度与时变全局可靠性灵敏度分析[J]. 机械科学与技术, 2018, 37(3): 358-363. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201803006.htmZHANG J, WANG Y Y. Research on time-variant reliability and time-varying global reliability sensitivity of aircraft landing gear mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(3): 358-363(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201803006.htm [3] 国志刚, 冯蕴雯, 冯元生. 铰链磨损可靠性分析及计算方法[J]. 西北工业大学学报, 2006, 24(5): 644-648. doi: 10.3969/j.issn.1000-2758.2006.05.024GUO Z G, FENG Y W, FENG Y S. Wear reliability of linkage under periodic loading[J]. Journal of Northwestern Polytechnical University, 2006, 24(5): 644-648(in Chinese). doi: 10.3969/j.issn.1000-2758.2006.05.024 [4] 成凯, 吕震宙, 石岩. 基于可能性矩的混合不确定性全局灵敏度分析[J]. 北京航空航天大学学报, 2017, 43(8): 1705-1712. doi: 10.13700/j.bh.1001-5965.2016.0626CHENG K, LU Z Z, SHI Y. Global sensitivity analysis under mixed uncertainty based on possibilistic moments[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1705-1712(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0626 [5] 唐成虎, 周长聪, 侯伟, 等. 考虑性能退化的飞机典型部件灵敏度分析[J]. 西安交通大学学报, 2019, 53(4): 158-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201904024.htmTANG C H, ZHOU C C, HOU W, et al. A sensitivity analysis of typical aircraft components with performance degradation[J]. Journal of Xi'an Jiaotong University, 2019, 53(4): 158-166(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201904024.htm [6] 游令非, 张建国, 翟浩, 等. 模糊-随机混合参数的机构运动可靠度计算方法[J]. 北京航空航天大学学报, 2019, 45(4): 714-721. doi: 10.13700/j.bh.1001-5965.2018.0433YOU L F, ZHANG J G, ZHAI H, et al. Computation method on motional reliability of mechanism under mixed parameters with fuzziness and randomness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 714-721(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0433 [7] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. doi: 10.1063/1.1721448 [8] 沈宁福. 新编金属材料手册[M]. 北京: 科学出版社, 2003.SHEN N F. New handbook of metal materials[M]. Beijing: Science Press, 2003(in Chinese). [9] 吕震宙, 宋述芳, 李洪双, 等. 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009.LU Z Z, SONG S F, LI H S, et al. Reliability and reliability sensitivity analysis of structural mechanism[M]. Beijing: Science Press, 2009(in Chinese). [10] 吕震宙, 李璐祎, 宋述芳, 等. 不确定性结构系统的重要性分析理论与求解方法[M]. 北京: 科学出版社, 2015.LU Z Z, LI L Y, SONG S F, et al. Importance analysis theory and solution method of uncertain structural system[M]. Beijing: Science Press, 2015(in Chinese). [11] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1): 271-280. http://www.ams.org/mathscinet-getitem?mr=1823119 [12] ZHOU C C, TANG C H, LIU F C, et al. Regional moment-independent sensitivity analysis with its application in engineering[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1031-1042. doi: 10.1016/j.cja.2017.04.006 [13] ZHOU C C, ZHANG Z, LIU F C. Sensitivity analysis for probabilistic anti-resonance design for aeronautical hydraulic pipelines[J]. Chinese Journal of Aeronautics, 2019, 32(4): 948-953. doi: 10.1016/j.cja.2019.01.001 [14] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering and System Safety, 2007, 92(6): 771-784. doi: 10.1016/j.ress.2006.04.015 [15] LI L Y, LU Z Z, FENG J, et al. Moment-independent importance measure of basic variable and its state dependent parameter solution[J]. Structural Safety, 2012, 38(5): 40-47. http://www.sciencedirect.com/science/article/pii/S0167473012000276 [16] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htmHAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201611001.htm [17] LAURENT L, RICHR R L, SOULIER B, et al. An overview of gradient-enhanced metamodels with applications[J]. Archives of Computional Methods in Engineering, 2019, 26(1): 61-106. doi: 10.1007/s11831-017-9226-3