Multi-objective test optimization selection based on NSGA-Ⅱ under unreliable test conditions
-
摘要:
针对测试不可靠因素严重影响测试优化选择结果以及现有方法不能很好解决多目标测试优化选择等问题,提出基于第二代非支配排序遗传算法(NSGA-Ⅱ)的多目标测试优化选择的方法。首先,描述了测试不可靠条件下多目标优化选择问题的数学模型;其次,在该数学模型下,将系统给出的故障检测率和隔离率作为约束条件,将测试代价、漏检率和虚警率作为优化目标,建立了多目标优化问题;然后,提出带有精英保留策略的NSGA-Ⅱ对多目标问题进行优化选择,利用NSGA-Ⅱ能够得到一组Pareto最优解,可根据实际需求选择最优的测试组合;最后,针对某装备进行实例分析,得到3组最优解,可以满足不同需求下的最优选择,验证了所提数学模型与多目标优化算法的可行性与有效性。
-
关键词:
- 测试优化选择 /
- 测试性设计 /
- 多目标测试 /
- 不可靠测试 /
- 第二代非支配排序遗传算法(NSGA-Ⅱ)
Abstract:Since test optimization selection plays a vital role in the test design of various equipment systems, in the testability design of various types of equipment, test unreliable factors seriously affect the optimization of test selection. First, this paper describes the mathematical model of the multi-objective optimization selection problem under unreliable test conditions. Second, under this mathematical model, the test cost, missed detection rate, and false alarm rate are used as the optimization goals, and the fault detection rate and isolation rate are constraints. Thus, a multi-objective optimization problem was established. Third, the NSGA-Ⅱ algorithm, a fast Non-dominated multi-objective optimization Sorting Genetic Algorithm-Ⅱ with an elite retention strategy, was proposed to optimize the proposed multi-objective problem. Using the NSGA-Ⅱ algorithm, a set of Pareto optimal solutions are obtained, and the optimal test combination can be selected according to actual needs. Finally, an example analysis is performed on a certain equipment, three sets of optimal solutions are obtained, which can meet the optimal selection under different needs, and the feasibility and effectiveness of the mathematical model and multi-objective optimization algorithm are verified.
-
Key words:
- test optimization selection /
- testability design /
- multi-objective test /
- unreliable test /
- NSGA-Ⅱ
-
表 1 系统故障与测试相关布尔逻辑矩阵
Table 1. System failure and test related Boolean logic matrix
F T t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 f1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 f2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 f3 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 f4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 f5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 f6 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 f7 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 f8 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 f9 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 f10 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 f11 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 f12 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 f13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 f14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 f15 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 f16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 注:f16为系统正常状态。 表 2 系统故障概率
Table 2. System failure probability
% 模式 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 概率 0.1 0.1 0.1 1 1 1 1 0.2 0.1 1 1 0.25 0.15 1 1 91.1 表 3 可用测试成本
Table 3. Available test cost
测试 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 成本 60 66 120 60 52 90 50 60 20 36 测试 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 成本 7 18 36 80 30 60 45 9 20 30 表 4 检测概率
Table 4. Detection probability
% F T t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 f1 95.18 92.65 94.72 92.32 95.32 94.26 92.22 93.97 96.12 95.75 f2 89.33 0 93.7 97.32 86.91 88.98 89.68 87.93 85.83 98.59 f3 96.74 0 0 87.42 0 0 0 0 0 0 f4 92.95 91.23 96.13 98.72 85.16 91.57 91.06 90.32 93.44 98.86 f5 90.19 0 98.4 88.8 97.51 85.91 88.16 95.97 85.7 96.04 f6 0 0 88.53 87.79 98.84 93.12 94.53 90.82 91.14 f7 94.84 0 0 97.26 89.18 93.16 95.65 91.46 89.27 91.98 f8 0 0 0 0 0 90.93 92.42 92.95 97.24 88 f9 0 0 0 0 0 0 0 0 0 94.01 f10 0 0 0 0 0 0 0 0 0 0 f11 0 0 0 0 0 0 0 0 0 0 f12 0 0 0 0 0 0 0 0 0 0 f13 0 0 0 0 0 0 0 0 0 0 f14 0 0 0 0 0 0 0 0 0 0 f15 0 0. 0 0 0 0 0 0 85.21 0 f16 0 0 0 0 0 0 0 0 0 0 F T t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 f1 89.48 87.98 85.61 93.22 91.7 95.02 91.42 91.02 90.91 0 f2 98.44 96.75 85.38 85.81 92.77 93.97 97.18 97.46 0 96.98 f3 0 0 89.38 90.15 86.69 87.67 98.08 95.29 0 0 f4 95.17 93.8 85.18 93.84 91.31 96.81 88.7 94.62 0 0 f5 90.77 86.87 90.38 95.05 95.02 97.12 87.24 89.85 0 0 f6 95.42 87.9 94.56 94.7 97.5 87.39 97.22 87.32 0 0 f7 88.75 93.5 86.3 86.18 88.82 98.92 88.33 87.18 0 0 f8 91.16 93.82 85.49 91.36 88.57 91.16 94.04 87.68 0 0 f9 98.07 90.19 93.57 91.19 97.12 89.76 98.54 0 0 0 f10 94.57 93.05 93.52 89.95 88.25 97.12 94.31 0 0 0 f11 0 91.32 85.22 87.15 96.27 90.11 97.19 0 0 0 f12 0 0 85.23 94.46 97.72 90.51 85.14 0 0 0 f13 0 0 0 94.79 88.25 93.28 86.92 0 0 0 f14 0 0 0 0 88.35 86.68 0 0 0 0 f15 0 0 87.66 95.19 85.7 97.52 96.46 0 0 0 f16 0 0 0 0 0 0 0 0 0 0 表 5 虚警概率
Table 5. False alarm probability
% F T t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 f1 0 0 0 0 0 0 0 0 0 0 f2 0 0.1 0 0 0 0 0 0 0 0 f3 0 0.17 0.18 0 0.14 0.18 0.11 0.2 0.17 0.11 f4 0 0 0 0 0 0 0 0 0 0 f5 0 0.17 0 0 0 0 0 0 0 0 f6 0.15 0.2 0.19 0 0 0 0 0 0 0 f7 0 0.16 0.18 0 0 0 0 0 0 0 f8 0.18 0.14 0.14 0.15 0.17 0 0 0 0 0 f9 0.15 0.12 0.16 0.19 0.18 0.15 0.17 0.11 0.2 0 f10 0.15 0.16 0.17 0.13 0.14 0.12 0.14 0.14 0.18 0.19 f11 0.15 0.17 0.12 0.17 0.14 0.17 0.11 0.15 0.17 0.19 f12 0.14 0.14 0.19 0.14 0.16 0.2 0.16 0.13 0.14 0.16 f13 0.19 0.1 0.16 0.16 0.16 0.18 0.18 0.16 0.16 0.13 f14 0.1 0.14 0.16 0.17 0.17 0.17 0.17 0.1 0.18 0.19 f15 0.13 0.18 0.12 0.14 0.15 0.15 0.2 0.16 0 0.15 f16 0 0 0 0 0 0 0 0 0 0 F T t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 f1 0 0 0 0 0 0 0 0 0 0.0018 f2 0 0 0 0 0 0 0 0 0.13 0 f3 0.17 0.19 0 0 0 0 0 0 0.16 0.2 f4 0 0 0 0 0 0 0 0 0.15 0.16 f5 0 0 0 0 0 0 0 0 0.11 0.1 f6 0 0 0 0 0 0 0 0 0.11 0.18 f7 0 0 0 0 0 0 0 0 0.13 0.16 f8 0 0 0 0 0 0 0 0 0.14 0.17 f9 0 0 0 0 0 0 0 0.11 0.15 0.11 f10 0 0 0 0 0 0 0 0.19 0.19 0.14 f11 0.14 0 0 0 0 0 0 0.18 0.16 0.14 f12 0.2 0.13 0 0 0 0 0 0.18 0.13 0.12 f13 0.11 0.17 0.15 0 0 0 0 0.18 0.15 0.18 f14 0.16 0.11 0.14 0.16 0 0 0.16 0.17 0.16 0.18 f15 0.13 0.14 0 0 0 0 0 0.12 0.12 0.15 f16 0 0 0 0 0 0 0 0 0 0 表 6 NSGA-Ⅱ参数设置
Table 6. NSGA-Ⅱ parameter setting
参数 数值 目标函数个数 3 决策变量个数 20 迭代次数 200 种群数量 500 拥挤度比较算子 0.5 交叉概率 0.9 变异概率 0.05 交叉算子 20 变异算子 20 表 7 几组典型的优化组合
Table 7. Several typical optimization combinations
情况 测试组合 成本 漏检率/% 虚警率/% 成本最优组合 {1,1,1,0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,1,1} 452 1.22 1.24 漏检率与虚警率最优组合 {1,1,1,0,0,1,0,0,1,1,1,1,1,0,1,0,0,0,1,1} 567 0.12 0.27 综合优化组合 {1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,1,0,0,1,1} 533 0.88 0.82 -
[1] 刘建敏, 刘远宏, 冯辅周, 等. 基于贪婪算法的测试优化选择[J]. 兵工学报, 2014, 35(12): 2109-2115. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201412026.htmLIU J M, LIU Y H, FENG F Z, et al. The optimization selection of tests based on greedy algorithm[J]. Acta Armamentarii, 2014, 35(12): 2109-2115(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201412026.htm [2] 蒋荣华, 王厚军, 龙兵. 基于离散粒子群算法的测试选择[J]. 电子测量与仪器学报, 2008, 22(2): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200802004.htmJIANG R H, WANG H J, LONG B. Test selection based on binary particle swarm optimization[J]. Journal of Electronic Measurement and Instrument, 2008, 22(2): 11-15(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZIY200802004.htm [3] 朱喜华, 李颖晖, 李宁, 等. 基于改进离散粒子群算法的传感器布局优化设计[J]. 电子学报, 2013, 41(10): 2104-2108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201310036.htmZHU X H, LI Y H, LI N, et al. Optimal sensor placement design based on improved discrete PSO algorithm[J]. Acta Electronica Sinica, 2013, 41(10): 2104-2108(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201310036.htm [4] 雷华军, 秦开宇. 基于改进量子进化算法的测试优化选择[J]. 仪器仪表学报, 2013, 34(4): 838-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201304019.htmLEI H J, QIN K Y. Optimal test selection based on improved quantum-inspired evolutionary algorithm[J]. Chinese Journal of Scientific Instrument, 2013, 34(4): 838-844(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201304019.htm [5] 雷华军, 秦开宇. 测试不可靠条件下基于量子进化算法的测试优化选择[J]. 电子学报, 2017(10): 154-162. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201710022.htmLEI H J, QIN K Y. Optimal selection of imperfect tests based on improved quantum-inspired evolutionary algorithm[J]. Acta Electronica Sinica, 2017(10): 154-162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201710022.htm [6] 张钊旭, 王志杰, 李建辰, 等. 基于搜寻者算法的测试性优化分配方法[J]. 鱼雷技术, 2018, 26(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201801010.htmZHANG Z X, WANG Z J, LI J C, et al. Optimal allocation method of testability based on seeker optimization algorithm[J]. Torpedo Technology, 2018, 26(1): 53-56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YLJS201801010.htm [7] 邓露, 许爱强, 吴忠德. 基于遗传算法的故障样本优化选取方法[J]. 系统工程与电子技术, 2015, 37(7): 1703-1708. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201507037.htmDENG L, XU A Q, WU Z D. Method of failure simple optimal selection based on genetic algorithm[J]. System Engineering and Electronics, 2015, 37(7): 1703-1708(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201507037.htm [8] 周虎, 胡海峰, 刘清竹, 等. 基于故障-测试相关模型的运载火箭测试点优化设计方法[J]. 载人航天, 2018, 81(1): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201801007.htmZHOU H, HU H F, LIU Q Z, et al. An optimization method for test points of manned launch vehicle based on fault-test dependency model[J]. Manned Spaceflight, 2018, 81(1): 38-44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZRHT201801007.htm [9] 陈希祥, 邱静, 刘冠军. 基于混合二进制粒子群-遗传算法的测试优化选择研究[J]. 仪器仪表学报, 2009, 30(8): 1674-1680. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200908019.htmCHEN X X, QIU J, LIU G J. Optimal test selection based on hybrid BPSO and GA[J]. Chinese Journal of Scientific Instrument, 2009, 30(8): 1674-1680(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB200908019.htm [10] 代西超, 南建国, 黄雷, 等. 基于改进遗传模拟退火算法的测试优化选择[J]. 空军工程大学学报(自然科学版), 2016, 17(2): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201602014.htmDAI X C, NAN J G, HUANG L, et al. An optimal test selection based on improved genetic simulated annealing algorithm[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(2): 70-75(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201602014.htm [11] QIU J, TAN X D, LIU G J, et al. Test selection and optimization for PHM based on failure evolution mechanism model[J]. Journal of Systems Engineering and Electronics, 2013, 24(5): 780-792. [12] ZHANG S G, LIU C R, HU Z, et al. Testability evaluation of the systems with multi-outcome imperfect tests[J]. Applied Mechanics and Materials, 2013, 303(306): 407-410. [13] ZHANG S G, PATTIPATI K R, HU Z, et al. Optimal selection of imperfect tests for fault detection and isolation[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(6): 1370-1384. [14] ZHANG S G, PATTIPATI K R, HU Z, et al. Dynamic coupled fault diagnosis with propagation and observation delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43(6): 1424-1439. [15] LI F. Dynamic modeling, sensor placement design, and fault diagnosis of nuclear desalination systems[D]. Tennessee: University of Tennessee, 2011: 20-30. [16] PAN J L, YE X H, XUE Q. An heuristic genetic algorithm solve test point selecting with unreliable test[C]//International Workshop on Computer Science & Engineering. Piscataway: IEEE Press, 2010: 227-232. [17] 杨光, 刘冠军, 李金国, 等. 基于故障检测和可靠性约束的传感器布局优化[J]. 电子学报, 2006, 34(2): 348-351. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200602028.htmYANG G, LIU G J, LI J G, et al. Optmial sensor placement based on various fault detectability and reliability criteria[J]. Acta Electronica Sinica, 2006, 34(2): 348-351(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200602028.htm [18] 叶晓慧, 潘佳梁, 王红霞, 等. 基于动态贪婪算法的不可靠测试点选择[J]. 北京理工大学学报, 2010, 30(11): 1350-1354. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201011020.htmYE X H, PAN J L, WANG H X, et al. Test set selection under unreliable test based on a new dynamic greedy algorithm[J]. Transactions of Beijing Institute of Technology, 2010, 30(11): 1350-1354(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201011020.htm [19] DENG S, JING B, YANG Z. Test point selection strategy under unreliable test based on heuristic particle swarm optimization algorithm[C]//2012 IEEE Conference on Prognostics and System Health Management. Piscataway: IEEE Press, 2012: 1-6. [20] RAGHAVAN V, SHAKERI M, PATTIPATI K. Test sequencing algorithms with unreliable tests[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1999, 29(4): 347-357. [21] RUAN S, YU F, MEIRINA C, et al. Dynamic multiple fault diagnosis with imperfect tests[J]. Autotestcon, 2003, 39(6): 1224-1236. [22] 杨鹏. 基于相关性模型的诊断策略优化设计技术[D]. 长沙: 国防科技大学, 2008: 47-50.YANG P. Optimization technology of design for diagnostic strategy based on dependency model[D]. Changsha: National University of Defense Technology, 2008: 47-50(in Chinese). [23] 翟禹尧, 史贤俊, 吕佳朋. 基于广义随机Petri网的导弹系统测试性建模与指标评估方法研究[J]. 兵工学报, 2019, 40(10): 2070-2079. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201910012.htmZHAI Y Y, SHI X J, LV J P. Research on evaluation method for testability index and modeling of missile system based on GSPN[J]. Acta Armamentarii, 2019, 40(10): 2070-2079(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201910012.htm [24] SRINIVAS N, DEB K. Muiltiobjective optimization using nondominated sorting in genetic algorithms[J]. Evolutionary Computation, 2014, 2(3): 221-248. [25] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [26] 陈希祥, 邱静, 刘冠军. 测试不确定条件下基于贝叶斯网络的装备测试优化选择技术[J]. 中国机械工程, 2011, 22(4): 379-384. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201104001.htmCHEN X X, QIU J, LIU G J. Optimal test selection of materiel based on bayesian network under test uncertainty[J]. China Mechanical Engineering, 2011, 22(4): 379-384(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201104001.htm