留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

函数调用网络的结构属性及其静态鲁棒性

王尔申 任虹帆 宏晨 孙庆华 刘畅 徐嵩

王尔申, 任虹帆, 宏晨, 等 . 函数调用网络的结构属性及其静态鲁棒性[J]. 北京航空航天大学学报, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039
引用本文: 王尔申, 任虹帆, 宏晨, 等 . 函数调用网络的结构属性及其静态鲁棒性[J]. 北京航空航天大学学报, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039
WANG Ershen, REN Hongfan, HONG Chen, et al. Structural properties and static robustness of function call networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039(in Chinese)
Citation: WANG Ershen, REN Hongfan, HONG Chen, et al. Structural properties and static robustness of function call networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 675-681. doi: 10.13700/j.bh.1001-5965.2020.0039(in Chinese)

函数调用网络的结构属性及其静态鲁棒性

doi: 10.13700/j.bh.1001-5965.2020.0039
基金项目: 

国家重点研发计划 2018AAA0100804

国家自然科学基金 61571309

国家自然科学基金 61703287

国家自然科学基金 61972040

辽宁省重点研发计划 2020JH2/10100045

辽宁省“兴辽英才计划” XLYC1907022

沈阳市高层次创新人才计划 RC190030

详细信息
    作者简介:

    王尔申  男, 博士, 教授, 博士生导师。主要研究方向: 卫星导航、航空监视技术

    宏晨  男, 博士, 副教授。主要研究方向: 多智能体系统、复杂网络

    通讯作者:

    宏晨. E-mail: hchchina@sina.com

  • 中图分类号: V221+.3;TB553

Structural properties and static robustness of function call networks

Funds: 

National Key R & D Program of China 2018AAA0100804

National Natural Science Foundation of China 61571309

National Natural Science Foundation of China 61703287

National Natural Science Foundation of China 61972040

Key R & D Projects of Liaoning Province 2020JH2/10100045

Talent Project of Revitalization Liaoning XLYC1907022

High-Level Innovation Talent Project of Shenyang RC190030

More Information
  • 摘要:

    通过对开源软件tar和MySQL源码的分析,构建基于函数调用的有向软件网络模型,研究函数调用网络的度分布、聚类系数等多个结构属性。结果表明,多个主要软件模块的耦合才使得整个函数调用网络具有高聚类特性;节点的依赖度(影响度)与节点的出度(入度)存在正相关性;节点的依赖度与影响度具有负相关性。基于有向软件网络鲁棒性的弱连通和强连通指标,采用不同节点攻击策略验证函数调用网络的静态鲁棒性。研究结果表明,对于tar网络,高出度策略对网络的弱连通性具有最佳的攻击效果;对于MySQL网络,高入度策略对网络的弱连通性具有最佳的攻击效果。

     

  • 图 1  函数调用网络结构示意图

    Figure 1.  Schematic diagram of function call software network structure

    图 2  不同网络节点依赖度和影响度的分布

    Figure 2.  Distribution of node dependency and influence of different networks

    图 3  度与依赖度和影响度关系

    Figure 3.  Relationship between degree of nodes and node dependency and influence

    图 4  节点的影响度与依赖度的关系

    Figure 4.  Relationship between node influence and dependency

    图 5  tar和MySQL网络鲁棒性指标与攻击比率的关系

    Figure 5.  Relationship between tar and MySQL network robustness and attack rate

    表  1  软件网络的结构属性

    Table  1.   Structural properties of software networks

    软件名称 N M < K> < L> C d < I> < D>
    tar 1 204 3 285 5.384 4.132 0.087 11 35.322 35.322
    MySQL 4 598 16 018 6.514 4.294 0.119 11 1 176.345 1 176.345
    下载: 导出CSV

    表  2  tar软件模块的结构属性

    Table  2.   Structural properties of software modules in tar

    模块序号 模块名称 N M < K> < L> C d < I> < D>
    1 src 687 1 817 5.287 3.059 0.037 9 7.760 7.760
    2 gnu 563 1 104 3.840 4.405 0.049 14 6.350 6.350
    3 lib 110 151 2.745 1.543 0.026 9 0.242 0.242
    4 tests 79 112 2.835 1.620 0.024 6 0.181 0.181
    5 rmt 57 101 3.544 1.760 0.058 6 0.190 0.190
    下载: 导出CSV

    表  3  MySQL软件模块的结构属性

    Table  3.   Structural properties of software modules in MySQL

    模块序号 模块名称 N M < K> < L> C d < I> < D>
    1 mysys 1 042 2 718 5.217 2.991 0.046 12 2.513 2.513
    2 libevent 667 2 219 6.654 4.139 0.041 9 4.090 4.090
    3 storagemyisam 568 1 839 6.475 4.392 0.053 8 3.201 3.201
    4 cmd-line-utils 556 1 179 4.241 3.522 0.057 10 2.890 2.890
    5 strings 342 628 3.673 2.049 0.075 12 0.303 0.303
    下载: 导出CSV

    表  4  依赖度最大的节点属性

    Table  4.   Properties of node with maximum dependency

    软件名称 节点编号 函数名称 依赖度 出度 入度 影响度
    tar 379 getopt_long 731 2 0 0
    MySQL 2 337 mi_open_share 2 224 59 0 0
    下载: 导出CSV

    表  5  影响度最大的节点属性

    Table  5.   Properties of node with maximum influence

    软件名称 节点编号 函数名称 影响度 出度 入度 依赖度
    tar 976 strlen 456 0 97 0
    MySQL 1 151 free 1 087 0 129 0
    下载: 导出CSV
  • [1] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. doi: 10.1126/science.286.5439.509
    [2] 胡赛, 熊慧军, 李学勇, 等. 多关系蛋白质网络构建及其应用研究[J]. 自动化学报, 2015, 41(2): 2155-2163. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201512016.htm

    HU S, XIONG H J, LI X Y, et al. The construction and application of multi-relational protein networks[J]. Acta Automatica Sinica, 2015, 41(2): 2155-2163(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201512016.htm
    [3] ZHANG J H, HU F N, WANG S L, et al. Structural vulnerability and intervention of high speed railway networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 462(c): 743-751. http://www.sciencedirect.com/science/article/pii/S0378437116304071
    [4] HONG C, ZHANG J, CAO X B, et al. Structural properties of the Chinese air transportation multilayer network[J]. Chaos, Solitons and Fractals, 2016, 86: 28-34. doi: 10.1016/j.chaos.2016.01.027
    [5] VASA R, SCHNEIDER J G, WOODWARD C, et al. Detecting structural changes in object oriented software systems[C]//Proceedings of the 2005 International Symposium on Empirical Software Engineering. Piscataway: IEEE Press, 2005: 479-486.
    [6] VALVERDE S, CANCHO R F, SOLÉ R V. Scale-free networks from optimal design[J]. Europhysics Letters, 2002, 60(4): 512-517. doi: 10.1209/epl/i2002-00248-2
    [7] VALVERDE S, SOLÉ R V. Network motifs in computational graphs: A case study in software architecture[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(2): 147-154. http://www.ncbi.nlm.nih.gov/pubmed/16196644
    [8] MYERS C R. Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(4): 046116. doi: 10.1103/PhysRevE.68.046116
    [9] 李兵, 王浩, 李曾扬, 等. 基于复杂网络的软件复杂性度量研究[J]. 电子学报, 2006, 34(S1): 2372-2375. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1007.htm

    LI B, WANG H, LI Z Y, et al. Study on software complexity measure based on complex network[J]. Acta Electronica Sinica, 2006, 34(S1): 2372-2375(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU2006S1007.htm
    [10] 汪北阳, 吕金虎. 复杂软件系统的软件网络结点影响分析[J]. 软件学报, 2013, 24(12): 2814-2829. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201312004.htm

    WANG B Y, LV J H. Analysis of software network node impact of complex software systems[J]. Journal of Software, 2013, 24(12): 2814-2829(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201312004.htm
    [11] HUANG L Z, AI J, PEI H Y. Software network models based on dynamic execution for fault propagation research[C]//IEEE International Conference on Software Quality. Piscataway: IEEE Press, 2015: 56-61.
    [12] 何鹏, 王鹏, 李兵. 基于多粒度软件网络模型的软件系统演化分析[J]. 电子学报, 2018, 46(2): 258-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201802001.htm

    HE P, WANG P, LI B. Evolution analysis of software system based on multi-granularity software network model[J]. Acta Electronica Sinica, 2018, 46(2): 258-267(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201802001.htm
    [13] ZHAO X S, ZHANG H H, ZHANG M Y, et al. Identifying influential nodes in large-scale software networks[C]//IEEE Information Technology and Mechatronics Engineering Conference. Piscataway: IEEE Press, 2017: 764-767.
    [14] PAN W F, LI B, MA Y T, et al. Multi-granularity evolution analysis of software using complex network theory[J]. Journal of Systems Science and Complexity, 2011, 24(6): 1068-1082. doi: 10.1007/s11424-011-0319-z
    [15] XIA Y X, ZHANG W P, ZHANG X J. The effect of capacity redundancy disparity on the robustness of interconnected networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 447: 561-568. doi: 10.1016/j.physa.2015.12.077
    [16] TAN F, XIA Y, WEI Z. Robust-yet-fragile nature of interdependent networks[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2015, 91(5): 052809. doi: 10.1103/PhysRevE.91.052809
    [17] WANG J W, SUN E H, XU B, et al. Robust-yet-fragile nature of interdependent networks[J]. Chao, Solitons and Fractals, 2015, 91(5): 052809. http://smartsearch.nstl.gov.cn/paper_detail.html?id=142519bbdeebafe0725d472efeb01485
    [18] 王尔申, 李宇, 宏晨, 等. Linux软件网络的结构属性及静态稳健性[J]. 电信科学, 2019, 11(11): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201911002.htm

    WANG E S, LI Y, HONG C, et al. Structural properties and static robustness of Linux software network[J]. Telecommunication Science, 2019, 11(11): 9-18(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX201911002.htm
    [19] 王小龙, 侯刚, 任龙涛, 等. 软件动态执行网络建模及其级联故障分析[J]. 计算机科学, 2014, 41(8): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201408025.htm

    WANG X L, HOU G, REN L T, et al. Software dynamic execution network modeling and its cascading failure analysis[J]. Computer Science, 2014, 41(8): 109-114(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201408025.htm
    [20] HE H T, REN R, ZHANG B, et al. Analysis on impact of node failure in software execution network[J]. Journal of Computational Information Systems, 2015, 11(6): 2217-2225. http://www.researchgate.net/publication/283128915_Analysis_on_impact_of_node_failure_in_software_execution_network
    [21] 王竣德, 老松杨, 阮逸润, 等. 基于节点负载容忍度的相依网络鲁棒性研究[J]. 系统工程与电子技术, 2017, 39(11): 2477-2483. doi: 10.3969/j.issn.1001-506X.2017.11.13

    WANG J D, LAO S Y, RUAN Y R, et al. Research on robustness of dependent networks based on node load tolerance[J]. Systems Engineering and Electronics, 2017, 39(11): 2477-2483(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.11.13
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  654
  • HTML全文浏览量:  131
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-08
  • 录用日期:  2020-05-01
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答