留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

距离相关系数融合GPR模型的卫星异常检测方法

孙宇豪 李国通 张鸽

孙宇豪, 李国通, 张鸽等 . 距离相关系数融合GPR模型的卫星异常检测方法[J]. 北京航空航天大学学报, 2021, 47(4): 844-852. doi: 10.13700/j.bh.1001-5965.2020.0041
引用本文: 孙宇豪, 李国通, 张鸽等 . 距离相关系数融合GPR模型的卫星异常检测方法[J]. 北京航空航天大学学报, 2021, 47(4): 844-852. doi: 10.13700/j.bh.1001-5965.2020.0041
SUN Yuhao, LI Guotong, ZHANG Geet al. A satellite anomaly detection method based on distance correlation coefficient and GPR model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 844-852. doi: 10.13700/j.bh.1001-5965.2020.0041(in Chinese)
Citation: SUN Yuhao, LI Guotong, ZHANG Geet al. A satellite anomaly detection method based on distance correlation coefficient and GPR model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 844-852. doi: 10.13700/j.bh.1001-5965.2020.0041(in Chinese)

距离相关系数融合GPR模型的卫星异常检测方法

doi: 10.13700/j.bh.1001-5965.2020.0041
基金项目: 

上海市科学技术委员会科研计划 17DZ1100700

详细信息
    作者简介:

    孙宇豪  女, 硕士研究生。主要研究方向: 卫星异常检测技术

    李国通  男, 博士, 研究员, 博士生导师。主要研究方向: 卫星导航与定位技术、信号检测和识别技术

    张鸽   男, 博士研究生。主要研究方向: 卫星自主健康管理技术

    通讯作者:

    李国通, E-mail: ligt@microsate.com

  • 中图分类号: V557+.3;TN911.71

A satellite anomaly detection method based on distance correlation coefficient and GPR model

Funds: 

Scientific Research Plan of Shanghai Science and Technology Commission 17DZ1100700

More Information
  • 摘要:

    卫星在轨运行期间,遥测数据表现形式通常为多维时间序列。高斯过程回归(GPR)模型可以为重要的遥测参数提供动态门限,及时发现隐藏在工程阈值内的故障征兆,但是高维卫星数据使得GPR模型具有局限性。因此,为获取与多个遥测参数相关的动态门限,在GPR模型的基础上,融合距离相关系数对预测变量进行选择,减少信息冗余和计算量,提高模型的可解释性,并估计模型的泛化误差以设置更合理的预测区间,提高模型的泛化能力,检测数据流的持续异常。对实际在轨卫星数据进行仿真实验,验证了距离相关系数融合GPR模型的卫星异常检测方法可以在卫星故障早期检测到数据异常,而且提高了模型的预测性能,降低了虚警率。

     

  • 图 1  过拟合模型的检测结果

    Figure 1.  Detection results of overfitting model

    图 2  基于DC-GPR模型的异常检测流程

    Figure 2.  Flowchart of anomaly detection based on DC-GPR model

    图 3  故障相关单机的遥测参数

    Figure 3.  Telemetry parameters of a fault-related machine

    图 4  不同遥测参数与响应变量间的距离相关系数

    Figure 4.  Distance correlation coefficient between each telemetry parameter and response variable

    图 5  不同模型的检测结果

    Figure 5.  Detection results of different models

    图 6  DC-GPR模型95%置信区间检测结果

    Figure 6.  Detection results of DC-GPR 95% confidence interval

    图 7  不同模型的性能指标对比

    Figure 7.  Comparison of performance indices of different models

    图 8  异常时不同遥测参数与响应变量间的距离相关系数

    Figure 8.  Distance correlation coefficient between each telemetry parameter and response variable during anomalies

    表  1  相关程度度量

    Table  1.   Relevance measure

    相关性 距离相关系数
    极强相关 0.8~1.0
    强相关 0.6~0.8
    中相关 0.4~0.6
    弱相关 0.2~0.4
    极弱或无相关 0~0.2
    下载: 导出CSV

    表  2  不同模型的检测评估

    Table  2.   Detection evaluation of different models

    模型 DR/% FA/% MA/%
    DC-GPR 86.67 5.41 0
    DC-GPR(95%置信区间) 52.94 19.51 0
    GPR 60 14.63 0
    RV-GPR 86.67 11.76 57.14
    下载: 导出CSV
  • [1] BELCASTRO C M.Aviation safety program: Integrated vehicle health management technical plan summary[R].Washington, D.C.: NASA Technology Report, 2006.
    [2] 彭喜元, 庞景月, 彭宇, 等. 航天器遥测数据异常检测综述[J]. 仪器仪表学报, 2016, 37(9): 1929-1945. doi: 10.3969/j.issn.0254-3087.2016.09.003

    PENG X Y, PANG J Y, PENG Y, et al. Review on anomaly detection of spacecraft telemetry data[J]. Chinese Journal of Scientific Instrument, 2016, 37(9): 1929-1945(in Chinese). doi: 10.3969/j.issn.0254-3087.2016.09.003
    [3] CHANDOLA V, BANERJEE A, KUMAR V.Anomaly detection: A survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=43479988&site=ehost-live
    [4] 张克明, 蔡远文, 任元. 基于生成对抗网络的航天异常事件检测方法[J]. 北京航空航天大学学报, 2019, 45(7): 1329-1336. doi: 10.13700/j.bh.1001-5965.2018.0682

    ZHANG K M, CAI Y W, REN Y.Space anomaly events detection approach based on generative adversarial nets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1329-1336(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0682
    [5] 吕军晖, 周刚, 金毅. 一种基于时间序列的自适应网络异常检测算法[J]. 北京航空航天大学学报, 2009, 35(5): 636-639. https://bhxb.buaa.edu.cn/CN/Y2009/V35/I5/636

    LÜ J H, ZHOU G, JIN Y.Adaptive aberrant network traffic detection algorithm based on time series forecast[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 636-639(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2009/V35/I5/636
    [6] 张妮, 车立志, 吴小进. 基于数据驱动的故障诊断技术研究现状及展望[J]. 计算机科学, 2017, 44(6A): 37-42. doi: 10.11896/j.issn.1002-137X.2017.6A.008

    ZHANG N, CHE L Z, WU X J.Present situation and prospect of data-driven based fault diagnosis technique[J]. Computer Science, 2017, 44(6A): 37-42(in Chinese). doi: 10.11896/j.issn.1002-137X.2017.6A.008
    [7] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201403001.htm

    PENG Y, LIU D T.Data-driven prognostics and health management: A review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201403001.htm
    [8] AZEVEDO D R, AMBROSIO A M, VIEIRA M, et al.Applyingdata mining for detecting anomalies in satellites[C]//European Dependable Computing Conference, 2012: 212-217.
    [9] HAWKINS S, HE H, WILLIAMS G J, et al.Outlier detection using replicator neural networks[C]//International Conference on Data Warehousing and Knowledge Discovery.Berlin: Springer, 2002: 170-180.
    [10] WILLIAMS G, BAXTER R, HE H, et al.A comparative study of RNN for outlier detection in data mining[C]//IEEE International Conference on Data Mining.Piscataway: IEEE Press, 2002: 709-712.
    [11] SCHOLKOPF B, PLATT J C, SHAWE T J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2014, 13(7): 1443-1471. http://www.ncbi.nlm.nih.gov/pubmed/11440593
    [12] DAS K, BHADURI K, VOTAVA P, et al. Distributed anomaly detection using 1-class SVM for vertically partitioned data[J]. Statistical Analysis and Data Mining, 2011, 4(4): 393-406. doi: 10.1002/sam.10125
    [13] ANAISSI A, KHO N L, WANG Y, et al. Automated parameter tuning in one-class support vector machine: An application for damage detection[J]. Journal of Data Science, 2018, 6(4): 311-325. doi: 10.1007/s41060-018-0151-9
    [14] ESTER M.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226-231.
    [15] RAMASWAMY S, RASTOGI R, SHIM K, et al. Efficient algorithms for mining outliers from large data sets[J]. International Conference on Management of Data, 2000, 29(2): 427-438.
    [16] YIN C, ZHANG S, YIN Z, et al. Anomaly detection model based on data stream clustering[J]. Cluster Computing, 2019, 22(1): 1729-1738. doi: 10.1007/s10586-017-1066-2
    [17] ALGULIYEV R M, ALIGULIYEV R M, SUKHOSTAT L, et al. Anomaly detection in big data based on clustering[J]. Statistics, Optimizationand Information Computing, 2017, 5(4): 325-340. http://www.researchgate.net/publication/321448608_Anomaly_Detection_in_Big_Data_based_on_Clustering/download
    [18] QIU H, EKLUND N H, HU X, et al.Anomaly detection using data clustering and neural networks[C]//International Joint Conference on Neural Network, 2008: 3627-3633.
    [19] AGGARWAL C C, YU P S.Outlier detection with uncertain data[C]//SIAM International Conference on Data Mining, 2008: 483-493.
    [20] THATTE G, MITRA U, HEIDEMANN J, et al. Parametric methods for anomaly detection in aggregate traffic[J]. IEEE ACM Transactions on Networking, 2011, 19(2): 512-525. doi: 10.1109/TNET.2010.2070845
    [21] PATCHA A, PARK J.An overview of anomaly detection techniques: Existing solutions and latest technological trends[J]. Computer Networks, 2007, 51(12): 3448-3470. doi: 10.1016/j.comnet.2007.02.001
    [22] PAN D W, LIU D T, ZHOU J, et al. Anomaly detection for satellite power subsystem with associated rules based on kernel principal component analysis[J]. Microelectronics Reliability, 2015, 55(9): 2082-2086. http://www.sciencedirect.com/science/article/pii/S0026271415300949
    [23] COHEN G, HILARIO M, PELLEGRINI C, et al. One-class support vector machines with a conformal kernel. A case study in handling class imbalance[J]. Lecture Notes in Computer Science, 2004, 3138: 850-858. doi: 10.1007/978-3-540-27868-9_93
    [24] TARIQ S, LEE S, SHIN Y, et al.Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA[C]//Knowledge Discovery and Data Mining, 2019: 2123-2133.
    [25] DONG D.Mine gas emission prediction based on Gaussian process model[J]. Procedia Engineering, 2012, 45: 334-338. doi: 10.1016/j.proeng.2012.08.167
    [26] ANOGARAN G, LOPEZ D.A Gaussian process based big data processing framework in cluster computing environment[J]. Cluster Computing, 2018, 21(1): 189-204. doi: 10.1007/s10586-017-0982-5
    [27] SZEKELY G J, RIZZO M L, BAKIROV N K, et al. Measuring and testing dependence by correlation of distances[J]. Annals of Statistics, 2007, 35(6): 2769-2794. http://biomet.oxfordjournals.org/external-ref?access_num=10.1214/009053607000000505&link_type=DOI
    [28] 葛芳君, 赵磊, 刘俊, 等. 基于Pearson相关系数的老年人社会支持与心理健康相关性研究的Meta分析[J]. 中国循证医学杂志, 2012, 12(11): 1320-1329. doi: 10.7507/1672-2531.20120207

    GE F J, ZHAO L, LIU J, et al. Correlation between social support andmental health of the aged based on Pearson correlation coefficient: A meta-analysis[J]. Chinese Journal of Evidence-Based Medicine, 2012, 12(11): 1320-1329(in Chinese). doi: 10.7507/1672-2531.20120207
    [29] 张建勇, 高冉, 胡骏, 等. 灰色关联度和Pearson相关系数的应用比较[J]. 赤峰学院学报(自然科学版), 2014, 30(11): 1-2. doi: 10.3969/j.issn.1673-260X.2014.11.001

    ZHANG J Y, GAO R, HU J, et al. Application comparison of gray correlation degree and Pearson correlation coefficient[J]. Journal of Chifeng University(Natural Science Edition), 2014, 30(11): 1-2(in Chinese). doi: 10.3969/j.issn.1673-260X.2014.11.001
    [30] NADEAU C, BENGIO Y.Inference for the generalization error[J]. Neural Information Processing Systems, 1999, 52(3): 307-313. http://bioinformatics.oxfordjournals.org/external-ref?access_num=10.1023/A:1024068626366&link_type=DOI
    [31] PANG J Y, LIU D T, PENG Y, et al. Anomaly detection based on uncertainty fusion for univariate monitoring series[J]. Measurement, 2017, 95: 280-292. doi: 10.1016/j.measurement.2016.10.031
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  744
  • HTML全文浏览量:  232
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-17
  • 录用日期:  2020-04-17
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答