留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间大气密度扰动对高超声速飞行器气动热环境的影响

程旋 肖存英 杜涛 胡雄 杨钧烽

程旋, 肖存英, 杜涛, 等 . 临近空间大气密度扰动对高超声速飞行器气动热环境的影响[J]. 北京航空航天大学学报, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044
引用本文: 程旋, 肖存英, 杜涛, 等 . 临近空间大气密度扰动对高超声速飞行器气动热环境的影响[J]. 北京航空航天大学学报, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044
CHENG Xuan, XIAO Cunying, DU Tao, et al. Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044(in Chinese)
Citation: CHENG Xuan, XIAO Cunying, DU Tao, et al. Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 754-764. doi: 10.13700/j.bh.1001-5965.2020.0044(in Chinese)

临近空间大气密度扰动对高超声速飞行器气动热环境的影响

doi: 10.13700/j.bh.1001-5965.2020.0044
基金项目: 

中国科学院A类战略性先导科技专项 XDA17010301

国家自然科学基金 11872128

国家自然科学基金 91952111

国家空间科学中心“青年科技创新”课题 Y9211FAF3S

详细信息
    作者简介:

    程旋  男, 博士研究生。主要研究方向: 临近空间大气建模及应用

    肖存英  女, 博士, 教授, 博士生导师。主要研究方向: 临近空间大气环境

    通讯作者:

    肖存英, E-mail: xiaocunying@bnu.edu.cn

  • 中图分类号: V419;V219;P351;P421

Influence of atmospheric density disturbance on aerothermodynamic environment of hypersonic vehicles in near space

Funds: 

Strategic Priority Research Program of the Chinese Academy of Sciences XDA17010301

National Natural Science Foundation of China 11872128

National Natural Science Foundation of China 91952111

Youth Science and Technology Innovation Foundation of NSSC Y9211FAF3S

More Information
  • 摘要:

    基于TIMED/SABER 2002—2018年大气密度观测数据,统计分析了20~80 km大气密度扰动对高超声速飞行器飞行热环境的影响。根据驻点热流估算方法给出的大气密度变化量与热流变化量之间的关系,定性和定量分析了不同月份大气密度相对变化量引起的热流变化量在垂直和水平方向的分布特征。研究表明:SABER大气密度月年均值计算的热流相对USSA76在夏季半球中高纬度地区偏高,在冬季半球偏低。在夏季半球高纬度地区约80 km附近存在热流增量的极大值,南半球夏季的极大值高于北半球夏季,尤其在南半球1月份,热流偏高可达32.2%。在经度方向,热流分布在夏季半球差异较小,冬季半球差异较大;考虑真实大气中存在的扰动时,在南半球和北半球夏季80 km附近,SABER大气密度预测的热流分别比USSA76偏高可达40.7%和36.6%。在经度方向,大气扰动引起的热流经向分布差异显著。在飞行器设计时,大气扰动的影响不能忽略;高超声速飞行器飞行应避免在夏季穿越南半球和北半球,规避热流增加带来的风险。

     

  • 图 1  大气密度相对偏差与热流变化量的关系

    Figure 1.  Relationship between atmospheric density error and heating transfer variation

    图 2  不同月份大气密度纬圈平均值相对USSA76的偏差引起的热流变化量随纬度和高度的分布

    Figure 2.  Latitude-altitude distribution of heating transfer variations caused by error between zonal monthly mean atmospheric density and USSA76

    图 3  80 km高度大气密度月平均值相对USSA76的偏差引起的热流变化量随经度和纬度的分布

    Figure 3.  Latitude-longitude distribution of heating transfer variations caused by error between monthly mean atmospheric density at 80 km and USSA76

    图 4  大气密度扰动引起的最小热流变化量和最大热流变化量在不同月份随纬度和高度的分布

    Figure 4.  Latitude-altitude distribution of minimum and maximum heating transfer variations caused by atmospheric density disturbances in different months

    图 5  80 km高度大气密度扰动引起的最小热流变化量和最大热流变化量在不同月份随纬度和经度的分布

    Figure 5.  Latitude-longitude distribution of minimum and maximum heating transfer variations caused by atmospheric density disturbances at 80 km in different months

  • [1] HIMA B H, VENKAT R M, YESUBABU V, et al. Coupling between the lower and middle atmosphere observed during a very severe cyclonic storm 'Madi'[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 169: 101-113. doi: 10.1016/j.jastp.2018.01.029
    [2] HOCKE K. Response of the middle atmosphere to the geomagnetic storm of November 2004[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154: 86-91. doi: 10.1016/j.jastp.2016.12.013
    [3] PATEL N, SHARMA S, JOSHI V, et al. Observations of middle atmospheric seasonal variations and study of atmospheric oscillations at equatorial regions[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193: 105066. doi: 10.1016/j.jastp.2019.105066
    [4] PERTSEV N N, SEMENOV A I, SHEFOV N N. Empirical model of vertical structure of the middle atmosphere: Seasonal variations and long-term changes of temperature and number density[J]. Advances in Space Research, 2006, 38(11): 2465-2469. doi: 10.1016/j.asr.2006.02.079
    [5] SHIBATA K, KODERA K. Simulation of radiative and dynamical responses of the middle atmosphere to the 11-year solar cycle[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(1-2): 125-143. doi: 10.1016/j.jastp.2004.07.022
    [6] KAIFLER N, KAIFLER B, EHARD B, et al. Observational indications of downward-propagating gravity waves in middle atmosphere lidar data[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 16-27. doi: 10.1016/j.jastp.2017.03.003
    [7] MAYR H G, MENGEL J G, CHAN K L, et al. Middle atmosphere dynamics with gravity wave interactions in the numerical spectral model: Tides and planetary waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73(7-8): 711-730. doi: 10.1016/j.jastp.2011.01.019
    [8] PANCHEVA D, MUKHTAROV P. Atmospheric tides and planetary waves: Recent progress based on SABER/TIMED temperature measurements (2002-2007)[M]//ABDU M A, PANCHEVA D. Aeronomy of the Earth's atmosphere and ionosphere. Berlin: Springer, 2011: 19-56.
    [9] 杜涛, 陈闽慷, 李凰立, 等. 高超声速气动加热关联方法的适应性分析[J]. 宇航学报, 2018, 39(9): 1039-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201809012.htm

    DU T, CHEN M K, LI H L, et al. Suitability analysis on correlation relation of aerothermodynamics entry environment for hypersonic flying vehicles[J]. Journal of Astronautics, 2018, 39(9): 1039-1046(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201809012.htm
    [10] 陈闽慷, 杜涛, 胡雄, 等. 北半球高空大气参数波动对临近空间飞行热环境的影响[J]. 科学通报, 2017, 62(13): 1402-1409. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201713011.htm

    CHEN M K, DU T, HU X, et al. Effect of atmosphere parameter oscillation at high altitude in the northern hemisphere for near space hypersonic flight aerothermodynamic prediction[J]. Chinese Science Bulletin, 2017, 62(13): 1402-1409(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201713011.htm
    [11] AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425-449. doi: 10.1016/j.paerosci.2011.06.001
    [12] HUEBNER L, MITCHELL A, BOUDREAUX E. Experimental results on the feasibility of an aerospike for hypersonic missiles[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1955: 95-0737.
    [13] 李健, 侯中喜, 刘新建, 等. 基于扰动大气模型的动力推进高超声速飞行器弹道特性分析[J]. 国防科技大学学报, 2007, 29(4): 6-11. doi: 10.3969/j.issn.1001-2486.2007.04.002

    LI J, HOU Z X, LIU X J, et al. Trajectories analyse for hypersonic vehicle with scramjet based on perturbation atmosphere model[J]. Journal of National University of Defense Technology, 2007, 29(4): 6-11(in Chinese). doi: 10.3969/j.issn.1001-2486.2007.04.002
    [14] 程路, 姜长生, 都延丽, 等. 变化风场下近空间飞行器机体/发动机一体化飞行力学建模与分析[J]. 宇航学报, 2012, 33(5): 547-555. doi: 10.3873/j.issn.1000-1328.2012.05.004

    CHENG L, JIANG C S, DU Y L, et al. Flight dynamics modeling of airframe/engine integrated near space vehicle in varying wind field[J]. Journal of Astronautics, 2012, 33(5): 547-555(in Chinese). doi: 10.3873/j.issn.1000-1328.2012.05.004
    [15] 孙磊, 廉璞, 常晓飞, 等. 临近空间大气环境建模及其对飞行器影响[J]. 指挥控制与仿真, 2016, 38(5): 107-111. doi: 10.3969/j.issn.1673-3819.2016.05.023

    SUN L, LIAN P, CHANG X F, et al. Near space atmosphere modeling and its effect on the aircraft[J]. Command Control & Simulation, 2016, 38(5): 107-111(in Chinese). doi: 10.3969/j.issn.1673-3819.2016.05.023
    [16] 杨钧烽, 肖存英, 胡雄, 等. 临近空间风切变特性及其对飞行器的影响[J]. 北京航空航天大学学报, 2019, 45(1): 57-65. doi: 10.3969/j.issn.1005-4561.2019.01.019

    YANG J F, XIAO C Y, HU X, et al. Wind shear characteristics in near space and their impacts on air vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 57-65(in Chinese). doi: 10.3969/j.issn.1005-4561.2019.01.019
    [17] ESPLIN R, ZOLLINGER L, BATTY C, et al. SABER instrument design update[J]. Infrared Spaceborne Remote Sensing Ⅲ, 1995, 2553: 253-263. doi: 10.1117/12.221361
    [18] REMSBERG E E, MARSHALL B T, GARCIA-COMAS M, et al. Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER[J]. Journal of Geophysical Research Atmospheres, 2008, 113(D17): D17101. doi: 10.1029/2008JD010013
    [19] GUHARAY A, NATH D, PANT P, et al. Middle atmospheric thermal structure obtained from Rayleigh lidar and TIMED/SABER observations: A comparative study[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D18): D18105. doi: 10.1029/2009JD011963
    [20] 宫晓艳, 胡雄, 吴小成, 等. COSMIC大气掩星与SABER/TIMED探测温度数据比较[J]. 地球物理学报, 2013, 56(7): 2152-2162. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307001.htm

    GONG X Y, HU X, WU X C, et al. Comparision of temperature measurements between COSMIC atmospheric radio occulation and SABER/TIMED[J]. Chinese Journal of Geophysics, 2013, 56(7): 2152-2162(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307001.htm
    [21] XU J Y, SMITH A K, LIU H L, et al. Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (TIMED)[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D13): D13107. doi: 10.1029/2008JD011298
    [22] XU J Y, SMITH A K, YUAN W, et al. Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D24): D24106. doi: 10.1029/2007JD008546
    [23] 万田, 刘洪伟, 樊菁. 100 km附近大气密度模型的误差带和置信度[J]. 中国科学: 物理学力学天文学, 2015, 45(12): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512007.htm

    WAN T, LIU H W, FAN J. Error band and confidence coefficient of atmospheric density models around altitude 100 km[J]. Science Sinica Physica, Mechania & Astronomica, 2015, 45(12): 52-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512007.htm
    [24] 肖存英, 胡雄, 杨钧烽, 等. 临近空间38°N大气密度特性及建模技术[J]. 北京航空航天大学学报, 2017, 43(9): 1757-1765. doi: 10.13700/j.bh.1001-5965.2016.0735

    XIAO C Y, HU X, YANG J F, et al. Characteristics of atmospheric density at 38° N in near space and its modeling technique[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1757-1765(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0735
    [25] 肖存英, 胡雄, 王博, 等. 临近空间大气扰动变化特性的定量研究[J]. 地球物理学报, 2016, 59(4): 1211-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604004.htm

    XIAO C Y, HU X, WANG B, et al. Quantiative studies on the variations of near space atmospheric fluctuation[J]. Chinese Journal of Geophysics, 2016, 59(4): 1211-1221(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604004.htm
    [26] OFFERMANN D, JARISCH M, OBERHEIDE J, et al. Global wave activity from upper stratosphere to lower thermosphere: A new turbopause concept[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(15): 1709-1729. doi: 10.1016/j.jastp.2006.01.013
    [27] PERINI L L. Compilation and correlation of stagnation convective heating rates on spherical bodies[J]. Journal of Spacecraft and Rockets, 1975, 12(3): 189-191. doi: 10.2514/3.27829
    [28] HAGAN M E, FORBES J M. Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D24): 1-15. doi: 10.1029/2001JD001236/full
    [29] GRIEGER N, SCHMITZ G, ACHATZ U. The dependence of the nonmigrating diurnal tide in the mesosphere and lower thermosphere on stationary planetary waves[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66: 733-754. doi: 10.1016/j.jastp.2004.01.022
    [30] LIEBERMAN R S, OBERHEIDE J, HAGAN M E, et al. Variability of diurnal tides and planetary waves during November 1978-May 1979[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(6-9): 517-528. doi: 10.1016/j.jastp.2004.01.006
    [31] HAGAN M E, FORBES J M. Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release[J]. Journal of Geophysical Research Space Physics, 2003, 108(A2): 1062. doi: 10.1029/2001JD001236/full
    [32] ANGELAS I, COLL M, FORBES J M. Nonlinear interactions in the upper atmosphere: The s=1 and s=3 nonmigrating semidiurnal tides[J]. Journal of Geophysical Research Space Physics, 2002, 107(A8): 1157. doi: 10.1029/2001JA900179/full
    [33] YAMASHITA K, MIYAHARA S, MIYOSHI Y, et al. Seasonal variation of non-migrating semidiurnal tide in the polar MLT region in a general circulation model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(8-11): 1083-1094. doi: 10.1016/S1364-6826(02)00059-7
    [34] XIAO C Y, HU X. Analysis on the global morphology of stratospheric gravity wave activity deduced from the COSMIC GPS occultation profiles[J]. GPS Solutions, 2010, 14(1): 65-74. doi: 10.1007/s10291-009-0146-z
    [35] FRITTS D C, ALEXANDER M J. Gravity wave dynamics and effects in the middle atmosphere[J]. Reviews of Geophysics, 2003, 41(1): 1003. doi: 10.1029/2001RG000106
    [36] YI F, KLOSTERMEYER J, RUSTER R. VHF radar observation of gravity wave critical layers in the mid-latitude summer mesopause region[J]. Geophysical Research Letters, 1991, 18(4): 697-700. doi: 10.1029/91GL00471
    [37] 梁晨, 薛向辉, 陈廷娣. 基于COSMIC卫星观测数据的平流层重力波的全球分布特征研究[J]. 地球物理学报, 2014, 57(11): 3668-3678. doi: 10.6038/cjg20141121

    LIANG C, XUE X H, CHEN T D. An investigation of the global morphology of stratosphere gravity waves based on COSMIC observations[J]. Chinese Journal of Geophysics, 2014, 57(11): 3668-3678(in Chinese). doi: 10.6038/cjg20141121
  • 加载中
图(5)
计量
  • 文章访问数:  856
  • HTML全文浏览量:  70
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-21
  • 录用日期:  2020-03-27
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答