留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SVM和EKF的高超声速滑翔飞行器轨迹预报

程云鹏 孙成志 闫晓东

程云鹏, 孙成志, 闫晓东等 . 基于SVM和EKF的高超声速滑翔飞行器轨迹预报[J]. 北京航空航天大学学报, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050
引用本文: 程云鹏, 孙成志, 闫晓东等 . 基于SVM和EKF的高超声速滑翔飞行器轨迹预报[J]. 北京航空航天大学学报, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050
CHENG Yunpeng, SUN Chengzhi, YAN Xiaodonget al. Trajectory prediction of hypersonic glide vehicle based on SVM and EKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050(in Chinese)
Citation: CHENG Yunpeng, SUN Chengzhi, YAN Xiaodonget al. Trajectory prediction of hypersonic glide vehicle based on SVM and EKF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2094-2105. doi: 10.13700/j.bh.1001-5965.2020.0050(in Chinese)

基于SVM和EKF的高超声速滑翔飞行器轨迹预报

doi: 10.13700/j.bh.1001-5965.2020.0050
详细信息
    作者简介:

    程云鹏  男, 博士研究生。主要研究方向:机动目标跟踪和预报

    孙成志  男, 硕士研究生。主要研究方向:航天器故障诊断和识别

    闫晓东  男, 博士, 副教授, 硕士生导师。主要研究方向:飞行器动力学与制导

    通讯作者:

    闫晓东, E-mail: yan804@nwpu.edu.cn

  • 中图分类号: V19;TN953

Trajectory prediction of hypersonic glide vehicle based on SVM and EKF

More Information
  • 摘要:

    高超声速滑翔飞行器(HGV)拦截问题中,轨迹预报是成功拦截的重要基础。针对HGV机动能力强、轨迹多变的特点,提出了一种基于支持向量机(SVM)和扩展卡尔曼滤波(EKF)的轨迹预报方法。在HGV的滑翔段机动模式分析的基础上,将HGV的机动运动分解为纵向运动模式和侧向运动模式,进而对运动模式的特征参数予以标定,形成SVM的训练集。建立地基单雷达轨迹跟踪模型,采用EKF对HGV滑翔段轨迹进行稳定跟踪并实现对运动模式特征参数的估计。基于SVM,建立了HGV运动识别框架,实现了对HGV滑翔段轨迹的预报。对平衡滑翔和跳跃机动2种典型机动模式进行数学仿真验证,结果表明,所提方法可以提高对该类目标的轨迹预报精度。

     

  • 图 1  支持向量机训练流程图

    Figure 1.  Flowchart of training by support vector machine

    图 2  高超声速滑翔飞行器运动识别轨迹预报流程图

    Figure 2.  Flowchart of motion recognition based trajectory prediction for HGVs

    图 3  准平衡侧摆机动轨迹跟踪均方根误差

    Figure 3.  Trajectory tracking root-mean-square error for quasi-equilibrium pendulum maneuver

    图 4  AUC结果对比(算例1)

    Figure 4.  AUC results comparison (Case 1)

    图 5  准平衡侧摆机动轨迹预报结果

    Figure 5.  Trajectory prediction results for quasi-equilibrium pendulum maneuver

    图 6  准平衡侧摆机动轨迹100 s预报结果空间误差散布

    Figure 6.  Spatial error distribution of 100 s trajectory prediction results for quasi-equilibrium pendulum maneuver

    图 7  定迎角转弯机动轨迹跟踪均方根误差

    Figure 7.  Trajectory tracking root-mean-square error for fixed angle of attack turning maneuver

    图 8  AUC结果对比(算例2)

    Figure 8.  AUC results comparison (Case2)

    图 9  定迎角转弯机动轨迹预报结果

    Figure 9.  Trajectory prediction results for fixed angle of attack turning maneuver

    图 10  定迎角转弯机动轨迹100 s预报结果空间误差散布

    Figure 10.  Spatial error distribution of 100 s trajectory prediction results for fixed angle of attackturning maneuver

    表  1  高超声速滑翔飞行器纵向机动标签

    Table  1.   Longitudinal maneuvering label of HGV

    迎角/(°) Labely
    αequi 0
    [0, 3) 1
    [3, 5) 2
    [5, 7) 3
    [7, 9) 4
    [9, 11) 5
    [11, 13) 6
    [13, 15) 7
    [15, 17) 8
    [17, 20] 9
    下载: 导出CSV

    表  2  高超声速滑翔飞行器侧向机动标签(1)

    Table  2.   Lateral maneuvering label of HGV (1)

    侧摆幅值/m Labelz1
    无机动 0
    [750, 1 250) 1
    [1 250, 1 750) 2
    [1 750, 2 250) 3
    [2 250, 2 750] 4
    下载: 导出CSV

    表  3  高超声速滑翔飞行器侧向机动标签(2)

    Table  3.   Lateral maneuvering label of HGV (2)

    倾侧角/rad Labelz2
    [π/9, π/7) 5
    [π/7, π/5) 6
    [π/5, π/3] 7
    下载: 导出CSV

    表  4  准平衡侧摆机动位置预报误差统计平均值

    Table  4.   Statistical mean value of position prediction error for quasi-equilibrium pendulum maneuver

    轨迹预报方法 位置误差统计平均值/km
    预报时长为30 s 预报时长为50 s 预报时长为100 s
    典型控制规律 4.89 9.51 30.78
    SVM-EKF 4.03 6.66 17.15
    下载: 导出CSV

    表  5  定迎角转弯机动位置预报误差统计平均值

    Table  5.   Statistical mean value of position prediction error for fixed angle of attack turning maneuver

    轨迹预报方法 位置误差统计平均值/km
    预报时长为30 s 预报时长为50 s 预报时长为100 s
    典型控制规律 4.07 4.34 4.64
    SVM-EKF 3.52 3.60 3.71
    下载: 导出CSV
  • [1] 张灿, 林旭斌, 刘都群, 等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹, 2020(1):16-20.

    ZHANG C, LIN X B, LIU D Q, et al.Review of the development of hypersonic vehicle technology in 2019[J].Aerodynamic Missile Journal, 2020(1):16-20(in Chinese).
    [2] 林旭斌, 李彦, 胡冬冬.美军2019财年高超声速科研预算简析[J].飞航导弹, 2018(6):1-3. http://www.cnki.com.cn/Article/CJFDTotal-FHDD201806004.htm

    LIN X B, LI Y, HU D D.Analysis on the budget of hypersonic scientific research of the US military in 2019[J].Aerodynamic Missile Journal, 2018(6):1-3(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-FHDD201806004.htm
    [3] LI G H, ZHANG H B, TANG G J.Maneuver characteristics analysis for hypersonic glide vehicles[J].Aerospace Science and Technology, 2015, 43:321-328. doi: 10.1016/j.ast.2015.03.016
    [4] ZARCHAN P.Tactical and strategic missile guidance[M].Reston:AIAA, 2012.
    [5] QIN L, LI J L, ZHOU D.Tracking filter and prediction for non-ballistic target HTV-2 in near space[C]//27th Chinese Control and Decision Conference.Piscataway: IEEE Press, 2015: 3556-3561.
    [6] KIM K, HWANG I.Intent-based detection and characterization of aircraft maneuvers in en route airspace[J].Journal of Aerospace Information Systems, 2018, 15(2):72-91. doi: 10.2514/1.I010566
    [7] 张洪波, 黄景帅, 李广华, 等.典型控制规律滑翔飞行器的轨迹预测方法[J].现代防御技术, 2017, 45(4):112-118. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201704019.htm

    ZHANG H B, HUANG J S, LI G H, et al.Trajectory prediction of glide vehicle based on typical control law[J].Modern Defence Technology, 2017, 45(4):112-118(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201704019.htm
    [8] VAPNIK N.The nature of statistical learning theory[M].Berlin:Springer, 1995.
    [9] BERNHARD S.Advances in kernel methods:Support vector learning[M].Cambridge:MIT Press, 1999.
    [10] 于震梁, 孙志礼, 曹汝男, 等.基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J].兵工学报, 2018, 39(5):991-997. http://www.cnki.com.cn/Article/CJFDTotal-BIGO201805020.htm

    YU Z L, SUN Z L, CAO R N, et al.Research on remaining useful life predictive model of machine parts based on SVM and Kalman filter[J].Acta Armamentarii, 2018, 39(5):991-997(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BIGO201805020.htm
    [11] 陈旭梅, 龚辉波, 王景楠.基于SVM和Kalman滤波的BRT行程时间预测模型研究[J].交通运输系统工程与信息, 2012, 12(4):29-34. http://d.wanfangdata.com.cn/Periodical/jtysxtgcyxx201204005

    CHEN X M, GONG H B, WANG J N.BRT vehicle travel time prediction based on SVM and Kalman filter[J].Journal of Transportation Systems Engineering and Information Technology, 2012, 12(4):29-34(in Chinese). http://d.wanfangdata.com.cn/Periodical/jtysxtgcyxx201204005
    [12] 杨茂, 黄宾阳, 江博, 等.基于卡尔曼滤波和支持向量机的风电功率实时预测研究[J].东北电力大学学报, 2017, 37(2):45-51. http://www.cnki.com.cn/Article/CJFDTotal-DBDL201702008.htm

    YANG M, HUANG B Y, JIANG B, et al.Real-time prediction for wind power based on Kalman filter and support vector machines[J].Journal of Northeast Electric Power University, 2017, 37(2):45-51(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DBDL201702008.htm
    [13] PENG H, BAI X L.Exploring capability of support vector machine for improving satellite orbit prediction accuracy[J].Journal of Aerospace Information Systems, 2018, 15(6):366-381. doi: 10.2514/1.I010616
    [14] VINH N X.Optimal trajectories in atmospheric flight[M].London:Pergamon Press Ltd., 1982:449-468.
    [15] 赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社, 1997.

    ZHAO H Y.Reentry dynamics and guidance of aircraft[M].Changsha:University of National Defense Science and Technology Press, 1997(in Chinese).
    [16] LI G H, ZHANG H B, TANG G J, et al.Maneuver modes analysis for hypersonic glide vehicles[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.Piscataway: IEEE Press, 2014: 543-548.
    [17] ZHU J W, LIU L H, TANG G J, et al.Highly constrained optimal gliding guidance[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2321-2335. doi: 10.1177/0954410015573973
    [18] 李凡, 熊家军, 张凯, 等.临近空间高超声速目标跟踪动力学模型[J].宇航学报, 2019, 40(3):266-276. http://www.cnki.com.cn/Article/CJFDTotal-YHXB201903004.htm

    LI F, XIONG J J, ZHANG K, et al.Near space hypersonic target dynamics tracking model[J].Journal of Astronautics, 2019, 40(3):266-276(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YHXB201903004.htm
    [19] 谢愈, 刘鲁华, 汤国建, 等.高超声速滑翔飞行器摆动式机动突防弹道设计[J].航空学报, 2011, 32(12):2174-2181. http://www.cqvip.com/QK/91925X/201112/40162349.html

    XIE Y, LIU L H, TANG G J, et al.Weaving maneuver trajectory design for hypersonic glide vehicle[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2174-2181(in Chinese). http://www.cqvip.com/QK/91925X/201112/40162349.html
    [20] 王丹.基于运动行为识别的高超声速目标弹道估计[D].哈尔滨: 哈尔滨工业大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863950.htm

    WANG D.Trajectory estimation of hypersonic target based on motion behavior recognition[D].Harbin: Harbin Institute of Technology, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1017863950.htm
    [21] HOUGH M E.Reentry maneuver estimation using nonlinear Markov acceleration models[J].Journal of Guidance, Control, and Dynamics, 2017, 40(7):1693-1710. doi: 10.2514/1.G002577
    [22] 张凯, 熊家军, 韩春耀, 等.一种基于气动力模型的高超声速滑翔目标跟踪算法[J].宇航学报, 2017, 38(2):123-130. http://www.cnki.com.cn/Article/CJFDTotal-YHXB201702003.htm

    ZHANG K, XIONG J J, HAN C Y, et al.A tracking algorithm of hypersonic glide reentry vehicle via aerodynamic model[J].Journal of Astronautics, 2017, 38(2):123-130(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-YHXB201702003.htm
    [23] SINGER R A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4):473-483. doi: 10.1109/TAES.1970.310128
    [24] ZHU J W, HE R Z, TANG G J, et al.Pendulum maneuvering strategy for hypersonic glide vehicles[J].Aerospace Science and Technology, 2018, 78:62-70. doi: 10.1016/j.ast.2018.03.038
    [25] HOU Q L, ZHANG J X, LIU L M, et al.Discriminative information-based nonparallel support vector machine[J].Signal Processing, 2019, 162:169-179. doi: 10.1016/j.sigpro.2019.03.026
    [26] CHANG M, LIN C.Leave-one-out bounds for support vector regression model selection[J].Neural Computation, 2005, 17(5):1188-1222. doi: 10.1162/0899766053491869
    [27] CHANG C, LIN C.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-27.
    [28] KJELDSEN H T.A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming:The impact of World War Ⅱ[J].Historia Mathematica, 2000, 27(4):331-361. doi: 10.1006/hmat.2000.2289
    [29] CHEN K L, YU J.Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach[J].Applied Energy, 2014, 113:690-705. doi: 10.1016/j.apenergy.2013.08.025
    [30] 张强, 肖刚, 蓝屹群.基于BP神经网络多类分类的湍流目标探测[J].系统工程与电子技术, 2018, 40(7):1486-1490. http://www.cnki.com.cn/Article/CJFDTotal-XTYD201807011.htm

    ZHANG Q, XIAO G, LAN Y Q.Turbulence target detection based on BP neural network multi-level classification[J].Systems Engineering and Elctronics, 2018, 40(7):1486-1490(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-XTYD201807011.htm
    [31] 何伟.基于朴素贝叶斯的文本分类算法研究[D].南京: 南京邮电大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10293-1019690701.htm

    HE W.Text classification algorithm research based on naive Bayes[D].Nanjing: Nanjing University of Posts and Telecommunications, 2018(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10293-1019690701.htm
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  120
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-25
  • 录用日期:  2020-05-30
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答