留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于乙炔基封端酰亚胺和氰酸酯树脂的互穿网络聚合物

梁垠 兰天 郭世峰 王献伟 刁训刚

梁垠, 兰天, 郭世峰, 等 . 基于乙炔基封端酰亚胺和氰酸酯树脂的互穿网络聚合物[J]. 北京航空航天大学学报, 2021, 47(5): 977-982. doi: 10.13700/j.bh.1001-5965.2020.0060
引用本文: 梁垠, 兰天, 郭世峰, 等 . 基于乙炔基封端酰亚胺和氰酸酯树脂的互穿网络聚合物[J]. 北京航空航天大学学报, 2021, 47(5): 977-982. doi: 10.13700/j.bh.1001-5965.2020.0060
LIANG Yin, LAN Tian, GUO Shifeng, et al. Interpenetrating polymer networks derived from ethynyl-terminated imide oligomers and cyanate ester[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 977-982. doi: 10.13700/j.bh.1001-5965.2020.0060(in Chinese)
Citation: LIANG Yin, LAN Tian, GUO Shifeng, et al. Interpenetrating polymer networks derived from ethynyl-terminated imide oligomers and cyanate ester[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 977-982. doi: 10.13700/j.bh.1001-5965.2020.0060(in Chinese)

基于乙炔基封端酰亚胺和氰酸酯树脂的互穿网络聚合物

doi: 10.13700/j.bh.1001-5965.2020.0060
详细信息
    作者简介:

    梁垠  男, 硕士研究生, 高级工程师。主要研究方向: 复合材料

    王献伟  男, 研究生, 工程师。主要研究方向: 高分子材料

    刁训刚  男, 博士, 教授, 博士生导师。主要研究方向: 电致变色材料

    通讯作者:

    王献伟, E-mail: wangxianwei@nimte.ac.cn

  • 中图分类号: TB553

Interpenetrating polymer networks derived from ethynyl-terminated imide oligomers and cyanate ester

More Information
  • 摘要:

    以2,3,3',4'-联苯四甲酸二酐和2,2'-双三氟甲基-4,4'-联苯二胺为单体、4-乙炔基邻苯二甲酸酐为封端剂合成了不同聚合度的聚酰亚胺低聚物(BETI),将其溶于双氛A型氰酸酯单体制备了改性氰酸酯树脂,对改性氰酸酯树脂的固化行为进行了详细探究,并对其固化物的热学性能、力学性能和介电性能等进行了表征与分析。结果表明:BETI对氰酸酯树脂的聚合有明显的催化作用,可以降低固化温度,缩短凝胶时间。基于BETI和氰酸酯树脂的互穿网络聚合物(IPN)的热性能和力学性能与纯氰酸酯树脂相比都有一定的提高。当加入质量分数30%、聚合度为19的BETI树脂时,固化物的玻璃化转变温度从297 ℃提高到309 ℃,热失重5%时温度从425 ℃提高到了431 ℃;拉伸强度从76 MPa提高到了94 MPa,冲击强度从24 kJ/m2℃提高到了31 kJ/m2。加入BETI后,聚合物的介电常数稍稍高于纯氰酸酯树脂。由于具有良好工艺性和材料性能,BETI改性氰酸酯树脂可作为基体树脂应用于航空航天等领域。

     

  • 图 1  聚酰亚胺低聚物的结构式

    Figure 1.  Structural formula of polyimide oligomers BETI

    图 2  BETI-2低聚物和固化物的FTIR图谱

    Figure 2.  FTIR spectrum of BETI-2 oligomers and cured resins

    图 3  BETI-2低聚物的1H NMR图谱

    Figure 3.  1H NMR spectrum of BETI-2 oligomers

    图 4  BADCy和BADCy/BETI-19的黏度-温度曲线

    Figure 4.  Temperature dependence of viscosity for BADCy and BADCy/BETI-19

    图 5  BADCy和BADCy/BETI-19的200 ℃恒温黏度曲线

    Figure 5.  Isothermal viscosity profiles of BADCy and BADCy/BETI-19 at 200 ℃

    图 6  BADCy、BETI-19及其共混固化物TGA曲线

    Figure 6.  TGA curves of BADCy, BETI-19 and their blends

    图 7  BADCy、BETI-19及其共混固化物DMA曲线

    Figure 7.  DMA curves of BADCy, BETI-19 and their blends

    图 8  BADCy、BETI-19及共混固化物介电常数-频率曲线

    Figure 8.  Frequency dependence of dielectric constant curves for BADCy, BETI-19 and their blends

    表  1  实验原料及试剂

    Table  1.   Experimental materials and reagents

    名称 来源 纯化方法
    2, 3, 3′, 4′-联苯四甲酸二酐(3, 4-BPDA) 常州阳光药业有限公司 真空熔融
    2, 2′-双(三氟甲基)-4′, 4′-联苯二胺(TFMB) 常州阳光药业有限公司 直接使用
    4-乙炔基邻苯二甲酸酐(EPA) 瑞典Nexam Chemical公司 直接使用
    双酚A型氰酸酯单体(BADCy) 扬州天启新材料有限公司 直接使用
    间甲酚 天津市富宇精细化学有限公司 直接使用
    无水乙醇 北京化工厂 直接使用
    下载: 导出CSV

    表  2  BADCy和BETI固化物的波璃化转变温度和冲击强度

    Table  2.   Glass transition temperature and impact strength of BADCy and BETI

    固化物 玻璃化转变温度/℃ 冲击强度/(kJ·m-2)
    BADCy 297 24
    BETI-2 441 18
    BETI-9 422 26
    BETI-19 394 46
    下载: 导出CSV

    表  3  BADCy、BETI-19及其共混固化物热和力学性能

    Table  3.   Thermal and mechanical properties of BADCy, BETI-19 and their blends

    固化物 玻璃化转变温度/℃ 拉伸强度/MPa 拉伸模量/GPa 断裂伸长率/% 冲击强度/ (kJ·m-2)
    BADCy 297 76 3.0 2.9 24
    IPN-10 303 78 3.2 3.0 25
    IPN-20 305 86 3.4 3.3 27
    IPN-30 309 94 3.5 3.4 31
    BETI-19 394 101 3.8 3.5 46
    下载: 导出CSV
  • [1] KINLOCH A J, TAYLOR A C. The toughening of cyanate-ester polymers. Part Ⅰ-Physical modification using particles, fibres and woven-mats[J]. Journal of Materials Science, 2002, 37(3): 433-460. doi: 10.1023/A:1013735103120
    [2] HILLERMEIER R W, SEFRRIS J C. Environmental effects on thermoplastic and elastomer toughened cyanate ester composite systems[J]. Journal of Applied Polymer Science, 2000, 77(3): 556-567. doi: 10.1002/(SICI)1097-4628(20000718)77:3<556::AID-APP11>3.0.CO;2-9
    [3] DENG Y, MARTIN G C. Diffusion phenomena during cyanate resin cure[J]. Polymer, 1996, 37(16): 3593-3601. doi: 10.1016/0032-3861(96)00168-1
    [4] HARISMENDY I, GOMEZ C M, RIO D M, et al. Cure monitoring of catalyzed cyanate ester resins[J]. Polymer Internaltional, 2000, 49(7): 735-742.
    [5] FENG Y, FANG Z P, GU A J. Toughening of cyanate ester resin by carboxyl terminated nitrile rubber[J]. Polymers for Advanced Technologies, 2004, 15(10): 628-631. doi: 10.1002/pat.519
    [6] ZHAO L, YUAN L, LIANG G Z, et al. Novel tough and thermally stable cyanate ester resins with high flame retardancy, low dielectric loss and constant based on a phenolphthalein type polyarylether sulfone[J]. RSC Advances, 2015, 5(73): 58989-59002. doi: 10.1039/C5RA10670B
    [7] YUAN L, HUANG S D, HU Y H, et al. Poly(phenylene oxide) modified cyanate resin for self-healing[J]. Polymers for Advanced Technologies, 2014, 25(7): 752-759. doi: 10.1002/pat.3290
    [8] ZHAN G Z, YU Y F, TANG X L, et al. Further study of the viscoelastic phase separation of cyanate ester modified with poly(ether imide)[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(3): 517-523. doi: 10.1002/polb.20709
    [9] SRINIVASAN S A, MCGRATH J E. Amorphous phenolphthalein-based poly(arylene ether) modified cyanate ester networks: Effect of thermal cure cycle on morphology and toughenability[J]. Journal of Applied Polymer, 1997, 64(1): 167-178. doi: 10.1002/(SICI)1097-4628(19970404)64:1<167::AID-APP15>3.0.CO;2-1
    [10] IIJIMA T, KAISE T, TOMOI M. Modification of cyanate ester resin by soluble polyimides[J]. Journal of Applied Polymer Science, 2003, 88(1): 1-11. doi: 10.1002/app.11492
    [11] LIANG G Z, ZHANG M X. Enhancement of processability of cyanate ester resin via copolymerization with epoxy resin[J]. Journal of Applied Polymer Science, 2002, 85(11): 2377-2381. doi: 10.1002/app.10872
    [12] SU W F A, CHUANG C M. Effects of chemical structure changes on curing reactions and thermal properties of cyanate ester-cured rigid-rod epoxy resins[J]. Journal of Applied Polymer Science, 2002, 85(11): 2419-2422. doi: 10.1002/app.10887
    [13] GU A. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties[J]. Composites Science and Technology, 2006, 66(11): 1749-1755. http://www.sciencedirect.com/science/article/pii/S0266353805004136
    [14] GANESAN A, MUTHUSAMY S. Mechanical properties of high temperature cyanate ester/BMI blends composites[J]. Polymer Composites, 2009, 30(6): 782-790. doi: 10.1002/pc.20619
    [15] MEIER C, PARLEVLIETT P, DORING M. Interpenetrating polymer networks formed by cyanate esters and phenylethynyl-terminated imides[J]. High Performance Polymers, 2017, 29(5): 556-568. doi: 10.1177/0954008316653996
    [16] 曲春艳, 肖万宝, 王德志, 等. 乙炔基聚酰亚胺/氰酸酯互穿网络结构的固化动力学及性能[J]. 高分子材料科学与工程, 2016, 32(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201602015.htm

    QU C Y, XIAO W B, WANG D Z, et al. Curing kinetics and properties of ethynyl terminated polyimide and cyanate ester sequential interpenetrating polymer network system[J]. Polymer Materials Science and Engineering, 2016, 32(2): 83-89(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201602015.htm
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  603
  • HTML全文浏览量:  174
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 录用日期:  2020-05-30
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答