Interpenetrating polymer networks derived from ethynyl-terminated imide oligomers and cyanate ester
-
摘要:
以2,3,3',4'-联苯四甲酸二酐和2,2'-双三氟甲基-4,4'-联苯二胺为单体、4-乙炔基邻苯二甲酸酐为封端剂合成了不同聚合度的聚酰亚胺低聚物(BETI),将其溶于双氛A型氰酸酯单体制备了改性氰酸酯树脂,对改性氰酸酯树脂的固化行为进行了详细探究,并对其固化物的热学性能、力学性能和介电性能等进行了表征与分析。结果表明:BETI对氰酸酯树脂的聚合有明显的催化作用,可以降低固化温度,缩短凝胶时间。基于BETI和氰酸酯树脂的互穿网络聚合物(IPN)的热性能和力学性能与纯氰酸酯树脂相比都有一定的提高。当加入质量分数30%、聚合度为19的BETI树脂时,固化物的玻璃化转变温度从297 ℃提高到309 ℃,热失重5%时温度从425 ℃提高到了431 ℃;拉伸强度从76 MPa提高到了94 MPa,冲击强度从24 kJ/m2℃提高到了31 kJ/m2。加入BETI后,聚合物的介电常数稍稍高于纯氰酸酯树脂。由于具有良好工艺性和材料性能,BETI改性氰酸酯树脂可作为基体树脂应用于航空航天等领域。
-
关键词:
- 酰亚胺 /
- 氰酸酯 /
- 互穿网络聚合物(IPN) /
- 工艺性 /
- 增韧
Abstract:Ethynyl-terminated oligomers (BETI) with different degrees of polymerization were synthesized using 2, 3, 3', 4'-biphenyltetracarboxylic dianhydride and 2, 2'-bis(trifluoromethyl) benzidine as the monomers and ethynylphthalic anhydride as the end-capper; modified cyanate ester resins were then formulated by dissolving BETI in bisphenol A dicyanate, and the properties of the blends and the resulting Interpenetrating Polymer Networks (IPNs) were investigated in terms of curing behavior, and thermal, mechanical, and dielectric properties. The results indicate that the trimerization of-OCN functionality could be catalyzed by the incorporation of BETI, as evidenced by significantly reduced curing temperatures and shorter gelation time. Moreover, IPNs show improved thermal and mechanical properties compared to pure polycyanurate. especially, when 30% weight BETI with the polymerization degree 19 was blended in pure cyanater ester resin, the class transition temperature, 5% weight loss temperature, tensile strength, and impact strength of the IPNs were increased from 297℃ to 309℃, 425℃ to 431℃, 76 MPa to 94 MPa, and 24 kJ/m2 to 31 kJ/m2, respectively. The dielectric constants of the IPNs are slightly higher than that of pure polycyanurate. The BETI-modified cyanate ester resins could be potentially used as matrix resin in aerospace industry due to their improved processability and material properties.
-
Key words:
- imide oligomers /
- cyanate ester /
- Interpenetrating Polymer Network (IPN) /
- processibility /
- toughening
-
表 1 实验原料及试剂
Table 1. Experimental materials and reagents
名称 来源 纯化方法 2, 3, 3′, 4′-联苯四甲酸二酐(3, 4-BPDA) 常州阳光药业有限公司 真空熔融 2, 2′-双(三氟甲基)-4′, 4′-联苯二胺(TFMB) 常州阳光药业有限公司 直接使用 4-乙炔基邻苯二甲酸酐(EPA) 瑞典Nexam Chemical公司 直接使用 双酚A型氰酸酯单体(BADCy) 扬州天启新材料有限公司 直接使用 间甲酚 天津市富宇精细化学有限公司 直接使用 无水乙醇 北京化工厂 直接使用 表 2 BADCy和BETI固化物的波璃化转变温度和冲击强度
Table 2. Glass transition temperature and impact strength of BADCy and BETI
固化物 玻璃化转变温度/℃ 冲击强度/(kJ·m-2) BADCy 297 24 BETI-2 441 18 BETI-9 422 26 BETI-19 394 46 表 3 BADCy、BETI-19及其共混固化物热和力学性能
Table 3. Thermal and mechanical properties of BADCy, BETI-19 and their blends
固化物 玻璃化转变温度/℃ 拉伸强度/MPa 拉伸模量/GPa 断裂伸长率/% 冲击强度/ (kJ·m-2) BADCy 297 76 3.0 2.9 24 IPN-10 303 78 3.2 3.0 25 IPN-20 305 86 3.4 3.3 27 IPN-30 309 94 3.5 3.4 31 BETI-19 394 101 3.8 3.5 46 -
[1] KINLOCH A J, TAYLOR A C. The toughening of cyanate-ester polymers. Part Ⅰ-Physical modification using particles, fibres and woven-mats[J]. Journal of Materials Science, 2002, 37(3): 433-460. doi: 10.1023/A:1013735103120 [2] HILLERMEIER R W, SEFRRIS J C. Environmental effects on thermoplastic and elastomer toughened cyanate ester composite systems[J]. Journal of Applied Polymer Science, 2000, 77(3): 556-567. doi: 10.1002/(SICI)1097-4628(20000718)77:3<556::AID-APP11>3.0.CO;2-9 [3] DENG Y, MARTIN G C. Diffusion phenomena during cyanate resin cure[J]. Polymer, 1996, 37(16): 3593-3601. doi: 10.1016/0032-3861(96)00168-1 [4] HARISMENDY I, GOMEZ C M, RIO D M, et al. Cure monitoring of catalyzed cyanate ester resins[J]. Polymer Internaltional, 2000, 49(7): 735-742. [5] FENG Y, FANG Z P, GU A J. Toughening of cyanate ester resin by carboxyl terminated nitrile rubber[J]. Polymers for Advanced Technologies, 2004, 15(10): 628-631. doi: 10.1002/pat.519 [6] ZHAO L, YUAN L, LIANG G Z, et al. Novel tough and thermally stable cyanate ester resins with high flame retardancy, low dielectric loss and constant based on a phenolphthalein type polyarylether sulfone[J]. RSC Advances, 2015, 5(73): 58989-59002. doi: 10.1039/C5RA10670B [7] YUAN L, HUANG S D, HU Y H, et al. Poly(phenylene oxide) modified cyanate resin for self-healing[J]. Polymers for Advanced Technologies, 2014, 25(7): 752-759. doi: 10.1002/pat.3290 [8] ZHAN G Z, YU Y F, TANG X L, et al. Further study of the viscoelastic phase separation of cyanate ester modified with poly(ether imide)[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(3): 517-523. doi: 10.1002/polb.20709 [9] SRINIVASAN S A, MCGRATH J E. Amorphous phenolphthalein-based poly(arylene ether) modified cyanate ester networks: Effect of thermal cure cycle on morphology and toughenability[J]. Journal of Applied Polymer, 1997, 64(1): 167-178. doi: 10.1002/(SICI)1097-4628(19970404)64:1<167::AID-APP15>3.0.CO;2-1 [10] IIJIMA T, KAISE T, TOMOI M. Modification of cyanate ester resin by soluble polyimides[J]. Journal of Applied Polymer Science, 2003, 88(1): 1-11. doi: 10.1002/app.11492 [11] LIANG G Z, ZHANG M X. Enhancement of processability of cyanate ester resin via copolymerization with epoxy resin[J]. Journal of Applied Polymer Science, 2002, 85(11): 2377-2381. doi: 10.1002/app.10872 [12] SU W F A, CHUANG C M. Effects of chemical structure changes on curing reactions and thermal properties of cyanate ester-cured rigid-rod epoxy resins[J]. Journal of Applied Polymer Science, 2002, 85(11): 2419-2422. doi: 10.1002/app.10887 [13] GU A. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties[J]. Composites Science and Technology, 2006, 66(11): 1749-1755. http://www.sciencedirect.com/science/article/pii/S0266353805004136 [14] GANESAN A, MUTHUSAMY S. Mechanical properties of high temperature cyanate ester/BMI blends composites[J]. Polymer Composites, 2009, 30(6): 782-790. doi: 10.1002/pc.20619 [15] MEIER C, PARLEVLIETT P, DORING M. Interpenetrating polymer networks formed by cyanate esters and phenylethynyl-terminated imides[J]. High Performance Polymers, 2017, 29(5): 556-568. doi: 10.1177/0954008316653996 [16] 曲春艳, 肖万宝, 王德志, 等. 乙炔基聚酰亚胺/氰酸酯互穿网络结构的固化动力学及性能[J]. 高分子材料科学与工程, 2016, 32(2): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201602015.htmQU C Y, XIAO W B, WANG D Z, et al. Curing kinetics and properties of ethynyl terminated polyimide and cyanate ester sequential interpenetrating polymer network system[J]. Polymer Materials Science and Engineering, 2016, 32(2): 83-89(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFZC201602015.htm