Modeling and impedance analysis of composite material aircraft grounded return network
-
摘要:
为保证飞行安全,复合材料飞机需增设金属电流回流网络来满足机上电气系统的接地需求。针对复合材料与金属电流回流网络搭接的阻抗计算问题,采用一种基于导体和电介质的部分元等效电路(PEEC)法,对包括金属导轨和复合材料蒙皮的接地回流网络进行了建模,计算接地回流网络在不同参数、结构下的阻抗,实现任意节点之间的阻抗计算,并分析了不同频率下接地回流网络中构件部分参数对阻抗值的影响及不同类别接地点间阻抗值的差异。仿真计算实例验证了所提方法的适用性及计算结果的正确性,可为复合材料飞机接地回流网络在故障管理及电气保护系统设计等方面提供参考。
-
关键词:
- 复合材料飞机 /
- 接地 /
- 电流回流网络 /
- 阻抗 /
- 部分元等效电路(PEEC)法
Abstract:To ensure flight safety, a metal current return network is added for composite material aircraft to meet the grounding requirements of the electrical system on board. For the calculation problem of the impedance of the composite material and the metal current return network, a Partial Element Equivalent Circuit (PEEC) method is used based on conductors and dielectrics. The grounded reflux network is modeled including metal bar and composite material skin to calculate the impedance under different parameters and structures as well as the impedance between any nodes, and the influence of some component parameters on the impedance value is analyzed. The simulation calculation results verify the applicability of the algorithm in this paper and the correctness of calculation results, and provide further references for the composite material aircraft grounded reflux network in terms of fault management and electrical protection system design.
-
表 1 材料对应电磁参数
Table 1. Electromagnetic parameters of materials
材料 电导率/(S·m-1) 相对磁导率/(H·m-1) 铝 3.77×107 1.0 CFRP 2×104 1.0 表 2 部件外部尺寸
Table 2. External dimensions of components
部件 长/mm 宽/mm 高/mm 金属导轨 2 000 50 30 复合材料板 2 000 1 000 4 表 3 仿真项目及相关参数设置
Table 3. Simulation project and related parameter setting
项目名称 金属导轨截面形状 搭接的CFRP电导率/(S·m-1) A 工字形 B 工字形 20 000 C 工字形 2 000 D 正方形 20 000 表 4 不同参数设置下的节点间阻抗值
Table 4. Impedance between nodes under different parameter settings
频率/Hz 阻抗/Ω A B C D 0 7.737×10-5 7.426×10-5 7.427×10-5 7.426×10-5 100 7.773×10-5 7.463×10-5 7.464×10-5 8.037×10-5 101 1.079×10-4 1.048×10-4 1.048×10-4 1.175×10-4 102 7.460×10-4 7.325×10-4 7.326×10-4 8.586×10-4 103 7.157×10-3 7.017×10-3 7.030×10-3 8.191×10-3 104 7.064×10-2 6.882×10-2 6.930×10-2 7.983×10-2 105 7.024×10-1 6.841×10-1 6.843×10-1 7.926×10-1 106 7.015 6.832 6.834 7.913 -
[1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508025.htmGU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508025.htm [2] ZHAO D Z, ZHANG M, ZHU M, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390-2414. doi: 10.3390/app9112390 [3] JONES C, SZTYKIEL M, PENA-ALZOLA R, et al.Grounding topologies for resilient, integrated composite electrical power systems for future aircraft applications[C]//Propulsion and Energy Forum.Reston: AIAA, 2019, 6: 402-416. [4] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122. doi: 10.1016/j.jclepro.2018.02.048 [5] KARCH C, METZNER C.Lightning protection of carbon fibre reinforced plastics-An overview[C]//International Conference on Lightning Protection(ICLP).Piscataway: IEEE Press, 2016, 77: 441-448. [6] 刘锐, 张丽. 复合材料飞机电搭接/接地研究[J]. 航空科学技术, 2016(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201608008.htmLIU R, ZHANG L. Research on electrical lap/grounding of composite aircraft[J]. Aeronautical Science and Technology, 2016(8): 31-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201608008.htm [7] 张宇. 复合材料飞机的电流回路接地技术研究[J]. 航空科学技术, 2011(6): 27-30. doi: 10.3969/j.issn.1007-5453.2011.06.009ZHANG Y. Research on current loop grounding technology of composite aircraft[J]. Aeronautical Science and Technology, 2011(6): 27-30(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.06.009 [8] BANDINELLI M, MORI A, BERCIGLI M, et al.A surface PEEC formulation for the analysis of electrical networks in airplanes[C]//International Symposium on Electromagnetic Compatibility (EMC).Piscataway: IEEE Press, 2013, 11: 694-700. [9] JONES C E, NORMAN P J, GALLOWAY S J, et al.Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//European Conference on Power Electronics and Applications.Karlsruhe: ECCE, 2016, 7: 300-309. [10] SAEEDIZADEH N, KERMANI S, RABBANI H. A comparison between the hp-version of finite element method with EIDORS for electrical impedance tomography[J]. Journal of Medical Signals and Sensors, 2011, 1(3): 7-16. doi: 10.4103/2228-7477.95415 [11] ZHANG X Y, XU G Z, ZHANG S, et al. A numerical computation forward problem model of electrical impedance tomography based on generalized finite element method[J]. IEEE Transactions on Magnetics, 2014, 50(2): 1045-1048. doi: 10.1109/TMAG.2013.2285161 [12] DU X L, ZOU J, WANG Z X. Calculation of the impedance of a rail track with earth return for the high-speed railway signal circuit using finite-element method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7093470 [13] HARRINGTON R F, HARRINGTON J L. Field computation by moment methods[M]. Oxford: Oxford University Press, 1966. [14] 蒋欣, 王宝发. 阻抗条缩减边缘散射优化模型研究[J]. 航空学报, 2001, 22(S1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2001S1018.htmJIANG X, WANG B F. Study of optimal model of reducing impedance strip edge scattering[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(S1): 93-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2001S1018.htm [15] 赵宇. 基于积分方程的互连参数提取方法及其快速算法[D]. 上海: 上海交通大学, 2018: 23-117.ZHAO Y.Extraction method of interconnection parameters based on integral equation and its fast algorithm[D].Shanghai: Shanghai Jiao Tong University, 2018: 23-117(in Chinese). [16] LI M, FRANCAVILLA M A, VIPIANA F, et al. A doubly hierarchical MoM for high-fidelity modeling of multiscale structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1103-1111. doi: 10.1109/TEMC.2014.2306691 [17] ARIANOS S, FRANCAVILLA M A, RIGHERO M, et al. Evaluation of the modeling of an EM illumination on an aircraft cable harness[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(4): 844-853. doi: 10.1109/TEMC.2014.2312752 [18] RUEHLI A E. Inductance calculations in a complex integrated circuit environment[J]. IBM Journal of Research and Development, 1972, 16(5): 470-481. doi: 10.1147/rd.165.0470 [19] RUEHLI A E, BRENNAN P A. Efficient capacitance calculations for three dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1973, 21(2): 76-82. doi: 10.1109/TMTT.1973.1127927 [20] RUEHLI A E, HEEB H. Circuit models for three dimensional geometries including dielectrics[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(3): 216-221. doi: 10.1109/TMTT.1974.1128204 [21] RUEHLI A E. Equivalent circuit models for three dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1992, 40(7): 1507-1516. doi: 10.1109/22.146332 [22] 丛国瑞. 基于部分元等效电路的电磁建模方法研究[D]. 长沙: 国防科学技术大学, 2011: 17-30.CONG G R.Research on electromagnetic modeling method based on partial element equivalent circuit[D].Changsha: National University of Defense Technology, 2011: 17-30(in Chinese). [23] 龙海波. 三维全媒质体系的部分元等效电路法及其建模[D]. 北京: 清华大学, 2005: 24-70.LONG H B.Partial element equivalent circuit method and modeling of 3D all media system[D].Beijing: Tsinghua University, 2005: 24-70(in Chinese). [24] 张筱. 基于等效原理的PEEC建模研究[D]. 北京: 清华大学, 2009: 24-113.ZHANG X.Research on PEEC modeling based on equivalent principle[D].Beijing: Tsinghua University, 2009: 24-113(in Chinese). [25] TORCHIO R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency[J]. IEEE Transactions on Antennas and Propagation, 2019, 12(67): 7452-7465. http://ieeexplore.ieee.org/document/8764572/citations [26] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. doi: 10.1109/TEMC.2015.2422672 [27] BANDINELLI M, ANTONINI G, MORI A, et al.Surface PEEC formulation for optimizing electrical network in airplane composite structures[C]//EMC Europe, 2012: 1-29.