Structural characteristics analysis and resilience assessment of airspace sector network
-
摘要:
为保障扇区内航空器运行安全,提高扇区网络在外界干扰下的韧性,从而有效减轻航班延误和空域拥堵。首先,依据中国空域扇区划分规则,运用复杂网络理论构建中国空域扇区网络模型;然后,定义网络基本特征参数,对中国空域扇区网络结构特性进行分析,提出扇区网络韧性的概念,并采用一种定量评估方法对其进行度量;最后,对比分析不同恢复策略下的韧性指标,以此制定空域扇区网络在外界干扰下的最佳恢复策略,提高网络韧性。结果表明:中国空域扇区网络具有较大的平均最短路径长度和较小的聚类系数,度分布服从双段幂律分布,介数和强度服从指数分布。介数是影响空域扇区网络韧性最大的指标,采用介数恢复策略可显著提高外界干扰下空域扇区网络的韧性。
Abstract:In order to ensure the safety of aircraft operations in the sector, improve the resilience of the sector network under external disturbance, and thereby effectively reduce flight delays and airspace congestion, by using complex network theory, an airspace sector network model of China is established based on airspace sector division rules. Then, the structural characteristics of airspace sector network are analyzed by defining basic network parameters. In addition, the concept of sector network resilience is defined and a quantitative evaluation method is used to measure it. Finally, resilience indicators under different recovery strategies are comparatively analyzed, so as to develop the optimal recovery strategy of the sector network under external disturbance and improve the network resilience. The results show that the airspace sector network of China has a lengthy average shortest path and a small clustering coefficient. The degree distribution follows a double power-law distribution and the cumulative distributions of betweenness follow an exponential distribution. Among them, betweenness has the greatest impact on the resilience of airspacesector network. Adopting the betweenness recovery strategy can significantly improve the airspacesector network resilience under external disturbance.
-
Key words:
- airspace sectors /
- complex network /
- betweenness /
- network efficiency /
- sector network resilience
-
表 1 空域扇区网络特征参数
Table 1. Airspace sector network characteristic parameters
特征参数 公式 含义 度 对于具有N个节点的空域扇区网络,节点i的度Ki表示空域扇区网络中与节点i存在航班联系的扇区的个数。eij表示若节点i与节点j相连,则eij=1,否则eij=0 累积度分布 表示度值不小于K的节点数所占的比例。Pk′为度分布,表示空域扇区网络中度为K的节点数占总节点数的比例 强度 表示经过扇区i的航班流量,V(i)表示扇区i的相邻扇区集合,ωij表示扇区i飞往扇区j的航班流量 聚类系数 表示节点i的Ki个邻节点间实际存在的边数与最大可能存在的边数之比,反应了扇区邻节点之间联系的紧密程度。Ei为扇区i相邻节点之间实际存在的边数 平均最短路径长度 表示空域扇区网络中连接任意两扇区之间最短距离的平均值,N为扇区节点个数,dij为扇区i和扇区j之间的最短距离 介数 节点i的介数表示空域扇区网络中所有最短路径中经过该扇区的数量比例,njk为扇区j和扇区k之间最短路径数,njk(i)为扇区j和扇区k之间最短路径中经过扇区i的数目 余平均度
Ki表示节点i的度,Kij表示节点i的邻居节点的度。Knni表示节点i的余平均度,Knn(K)表示度为K的节点的余平均度 网络效率 E表示空域扇区网络的网络效率,若扇区i与扇区j之间没有路径连接时,dij=∞,网络效率E的取值范围为[0, 1],E的值越大,网络连通性越好 -
[1] 曾小舟. 基于复杂网络理论的中国航空网络结构实证研究与分[D]. 南京: 南京航空航天大学, 2012: 15-30.ZENG X Z.Empirical research and analysis of Chinese aviation network structure based on complex network theory[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 15-30(in Chinese). [2] CAI K Q, ZHANG J, DU W B, et al. Analysis of the Chinese air route network as a complex network[J]. Chinese Physics B, 2012, 21(2): 596-602. [3] ZANIN M, LILLO F. Modelling the air transport with complex networks: A short review[J]. The European Physical Journal Special Topics, 2013, 215(1): 5-21. doi: 10.1140/epjst/e2013-01711-9 [4] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htmWU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 113-119(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm [5] 傅超琦, 王瑛, 李超, 等. 不同增长机制下航空网络自愈特性[J]. 北京航空航天大学学报, 2018, 44(6): 1221-1229. doi: 10.13700/j.bh.1001-5965.2017.0485FU C Q, WANG Y, LI C, et al. Research on self-healing characteristics of aviation network under different growth mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1221-1229(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0485 [6] 许欣华. 航空网络鲁棒性及延误传播相关性研究[D]. 南京: 南京航空航天大学, 2018: 9-21.XU X H.Research on robustness of air transportation network and flight delay correlation[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 9-21(in Chinese). [7] REN G J, LU C Y, ZHU J, et al. Analyzing the topological characteristic and key nodes of Chinese air sector network[J]. International Journal of Modern Physics B, 2019, 33(11): 2-21. doi: 10.1142/S0217979219501005 [8] HOSSEINI S, BARKER K, RAMIREZ-MARQUEZ J E. A review of definitions and measures of system resilience[J]. Reliability Engineering and System Safety, 2016, 145: 47-61. doi: 10.1016/j.ress.2015.08.006 [9] NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering and System Safety, 2017, 157: 35-53. doi: 10.1016/j.ress.2016.08.013 [10] 崔琼, 李建华, 冉淏丹, 等. 基于任务能力的指挥信息系统超网络弹性度量[J]. 指挥与控制学报, 2017, 3(2): 137-143. doi: 10.3969/j.issn.2096-0204.2017.02.0137CUI Q, LI J H, RAN H D, et al. Resilience measurement of command information system super-networkbased on mission capability[J]. Journal of Command and Control, 2017, 3(2): 137-143(in Chinese). doi: 10.3969/j.issn.2096-0204.2017.02.0137 [11] 崔琼, 李建华, 王宏, 等. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201804018.htmCUI Q, LI J H, WANG H, et al. Resilience analysis model of networked command information system based on node repairability[J]. Computer Science, 2018, 45(4): 117-121(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201804018.htm [12] TANG J Q, RUDOLF H H, MA X L. A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads[J]. Plos One, 2018, 13(1): e0190616. doi: 10.1371/journal.pone.0190616 [13] 胡玉, 顾洁, 马睿, 等. 面向配电网弹性提升的智能软开关鲁棒优[J]. 电力自动化设备, 2019, 39(11): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201911014.htmHU Y, GU J, MA R, et al. SNOP robust optimization for distribution network resilience enhancement[J]. Electric Power Automation Equipment, 2019, 39(11): 85-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201911014.htm [14] WANG Y J, ZHAN J M, XU X H, et al. Measuring the resilience of an airport network[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2694-2705. doi: 10.1016/j.cja.2019.08.023 [15] ADGER W N. Social and ecological resilience: Are they related [J]. Progress in Human Geography, 2000, 24(3): 347-364. doi: 10.1191/030913200701540465 [16] ROSE A, LIAO S Y. Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions[J]. Social Science Electronic Publishing, 2005, 45(1): 75-122. http://www.tandfonline.com/servlet/linkout?suffix=CIT0027&dbid=16&doi=10.1080%2F09535314.2017.1369010&key=10.1111%2Fj.0022-4146.2005.00365.x [17] DINH L T T, PASMAN H, GAO X, et al. Resilience engineering of industrial processes: Principles and contributing factors[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(2): 233-241. doi: 10.1016/j.jlp.2011.09.003 [18] 徐野. 复杂互联系统与网络鲁棒性研究[M]. 北京: 电子工业出版社, 2015: 37-40.XU Y. Study of robustness in complex interconnected system and networks[M]. Beijing: Publishing House of Electronics Industry, 2015: 37-40(in Chinese).