留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速栅格舵/弹身干扰特性数值模拟与试验研究

李永红 杨晓娟 陈建中 贾巍

李永红, 杨晓娟, 陈建中, 等 . 超声速栅格舵/弹身干扰特性数值模拟与试验研究[J]. 北京航空航天大学学报, 2021, 47(5): 953-960. doi: 10.13700/j.bh.1001-5965.2020.0086
引用本文: 李永红, 杨晓娟, 陈建中, 等 . 超声速栅格舵/弹身干扰特性数值模拟与试验研究[J]. 北京航空航天大学学报, 2021, 47(5): 953-960. doi: 10.13700/j.bh.1001-5965.2020.0086
LI Yonghong, YANG Xiaojuan, CHEN Jianzhong, et al. Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 953-960. doi: 10.13700/j.bh.1001-5965.2020.0086(in Chinese)
Citation: LI Yonghong, YANG Xiaojuan, CHEN Jianzhong, et al. Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 953-960. doi: 10.13700/j.bh.1001-5965.2020.0086(in Chinese)

超声速栅格舵/弹身干扰特性数值模拟与试验研究

doi: 10.13700/j.bh.1001-5965.2020.0086
详细信息
    作者简介:

    李永红  男, 博士研究生, 工程师。主要研究方向: 计算/试验空气动力学

    杨晓娟  女, 硕士, 助理研究员。主要研究方向: 试验空气动力学

    通讯作者:

    杨晓娟, E-mail: 977505146@qq.com

  • 中图分类号: V221+.3

Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed

More Information
  • 摘要:

    对于呈十字型布局的栅格舵与弹身组合体来说,在有迎角存在时,位于弹身垂直平面的栅格舵会处于弹体头部分离涡的干扰区,而位于弹身水平面的栅格舵主要受弹体上洗流的影响,2种安装形式的栅格舵的气动特性会有较大差异。为研究弹身对栅格舵气动特性的干扰影响,基于典型栅格舵及栅格舵与弹身组合体布局,利用数值模拟方法对比分析了有无弹身干扰情况下栅格舵的超声速气动特性,分析了弹身对不同安装位置栅格舵的扰流特性、载荷分布,研究了由单独栅格舵气动特性转换到存在弹身干扰时栅格舵气动特性的修正方法。通过风洞验证试验,获取了2种不同安装方式栅格舵试验数据差异,验证了洗流修正方法的可行性,为建立面向工程应用的栅格舵高速风洞试验与数据修正技术提供了数据支撑。

     

  • 图 1  栅格舵/弹身组合体外形示意图

    Figure 1.  Sketch map of grid fins/missile body configuration

    图 2  栅格舵/弹身组合体网络拓扑结构

    Figure 2.  Sketch map of topogical structure of grids for grid fins/missile booly configuration

    图 3  弹身干扰对栅格舵法向力系数的影响(Ma=2.0, h0/D=0.375)

    Figure 3.  Effect of missile body interference on normal force coefficients of grid fins (Ma=2.0, h0/D=0.375)

    图 4  纵向对称剖面马赫数及流线分布(Ma=2.0, α=6°, h0/D=0.375)

    Figure 4.  Mach number and streamline distribution for longitudinal symmetrical profile (Ma=2.0, α=6°, h0/D=0.375)

    图 5  栅格舵前缘剖面当地迎角云图(Ma=2.0, α=6°, h0/D=0.375)

    Figure 5.  Cloud chart of local angle of attack for leading edge profile of grid fin (Ma=2.0, α=6°, h0/D=0.375)

    图 6  洗流修正结果与真实CFD计算结果对比(Ma=2.0, h0/D=0.375)

    Figure 6.  Comparison of upward flow correction results and real CFD results (Ma=2.0, h0/D=0.375)

    图 7  栅格舵前缘剖面当地迎角云图(Ma=2.0, α=6°, h0/D=0.125)

    Figure 7.  Cloud chart of local angle of attack for leading edge profile of grid fin (Ma=2.0, α=6°, h0/D=0.125)

    图 8  弹身干扰对栅格舵法向力系数的影响(Ma=2.0, h0/D=0.125)

    Figure 8.  Effect of missile body interference on normal force coefficients of grid fins (Ma=2.0, h0/D=0.125)

    图 9  洗流修正结果与真实CFD计算结果对比(Ma=2.0, h0/D=0.125)

    Figure 9.  Comparison of upward flow correction results and real CFD results (Ma=2.0, h0/D=0.125)

    图 10  弹身干扰对栅格舵轴向力系数的影响(Ma=2.0, h0/D=0.125)

    Figure 10.  Effect of missile body interference on axial force coefficients of grid fins (Ma=2.0, h0/D=0.125)

    图 11  栅格舵前缘剖面当地马赫数云图(Ma=2.0, α=6°, h0/D=0.125)

    Figure 11.  Cloud chart of local Mach number for leading edge profile of grid fin (Ma=2.0, α=6°, h0/D=0.125)

    图 12  风洞试验模型照片

    Figure 12.  Photos of test models in wind tunnel

    图 13  弹身干扰对栅格舵法向力系数的影响

    Figure 13.  Effect of missile body interference on normal force coefficients of grid fins

    图 14  弹身干扰对栅格舵轴向力系数的影响

    Figure 14.  Effect of missile body interference on axial force coefficients of grid fins

    图 15  洗流修正结果与试验结果对比

    Figure 15.  Comparison of upward flow correction results and test results

    表  1  栅格舵外形尺寸

    Table  1.   Main dimensions of grid fins

    H/D L/D C/D h0/D
    0.875 0.875 0.25 0.375
    下载: 导出CSV
  • [1] 黎汉华, 石玉红. 栅格舵国内外研究现状及发展趋势[J]. 导弹与航天运载技术, 2008, 298(6): 27-30. doi: 10.3969/j.issn.1004-7182.2008.06.007

    LI H H, SHI Y H. Current status and development trend of grid fin[J]. Missiles and Space Vehicles, 2008, 298(6): 27-30(in Chinese). doi: 10.3969/j.issn.1004-7182.2008.06.007
    [2] BROOKS R A, BURKHALTER J E. Experimental and analytical analysis of grid fin configurations[J]. Journal of Aircraft, 1989, 26(9): 885-887. doi: 10.2514/3.45856
    [3] BURKHALTER J E, HARTFIELD R J, LELEUX T M, et al. Nonlinear aerodynamic analysis of grid fin configurations[J]. Journal of Aircraft, 1995, 32(3): 547-554. doi: 10.2514/3.46754
    [4] WASHINGTON W D, MILLER M S. Experimental investigation of grid fin aerodynamics: A synopsis of nine wind tunnel and three flight tests[C]//Proceedings of the NATO RTO Applied Vehicle Technology Panel Symposium on Missile Aerodynamics. Cedex: NATO Research and Technology Organization, 1998: 1-14.
    [5] DESPIRITO J, EDGE H L, WEINACHT P, et al. CFD analysis of grid fins for maneuvering missiles[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 10-13.
    [6] DUPUIS A, BERNER C. Aerodynamic aspects of a grid finned projectile at subsonic and supersonic velocities[C]//Proceedings of 19th International Symposium of Ballistics. Interlaken: International Ballistics Committee, 2001: 495-502.
    [7] DESPIRITO J, VAUGHN M E, WASHINGTON W D, et al. Subsonic flow CFD investigation of canard-controlled missile with planar and grid fins[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 6-9.
    [8] BURKHALTER J E. Grid fins for missile applications in supersonic flow[C]//34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996: 15-18.
    [9] THEERTHAMALAI P, MANISEKARAN S, NAGARATHINAM M. A prediction method for aerodynamic characterization of grid-fin configurations at supersonic speeds[C]//23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005: 1-8.
    [10] THEERTHAMALAI P, NAGARATHINAM M. Aerodynamic analysis of grid-fin configurations at supersonic speeds[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 750-756. doi: 10.2514/1.16741
    [11] THEERTHAMALAI P. Aerodynamic characterization of grid fins at subsonic speeds[J]. Journal of Aircraft, 2007, 44(2): 694-697. doi: 10.2514/1.27653
    [12] 余奇华, 敬代勇. 基于非结构网格的格栅舵导弹数值模拟计算[J]. 航空兵器, 2009, 2(1): 15-21. doi: 10.3969/j.issn.1673-5048.2009.01.004

    YU Q H, JIN D Y. Numerical simulation for a grid fin missile based on unstructured mesh[J]. Aero Weaponry, 2009, 2(1): 15-21(in Chinese). doi: 10.3969/j.issn.1673-5048.2009.01.004
    [13] 陆中荣, 沈遐龄, 童自力, 等. 栅格舵空气动力特性的计算与分析[J]. 北京航空航天大学学报, 1996, 22(5): 575-580. https://bhxb.buaa.edu.cn/CN/abstract/abstract11052.shtml

    LU Z R, SHEN X L, TONG Z L, et al. Calculation and analysis of grid fin configurations[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(5): 575-580(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract11052.shtml
    [14] 贝洛齐尔科夫斯基C M, 奥德诺弗尔J A, 萨芬I O, 等. 栅格翼[M]. 王丹阳, 杜早力, 刘志珩, 等译. 北京: 中国运载火箭技术研究院第一设计部, 1994: 278-286.

    BELOZILKOVSKY C M, ODENOVEI J A, SAFIN I O, et al. Grid fins[M]. WANG D Y, DU Z L, LIU Z Y, et al, translated. Beijing: The First Design Department of China Academy of Carrier Rocket, 1994: 278-286(in Chinese).
    [15] 沈遐龄, 王丽丽. 栅格舵和机身组合体的气动特性计算与分析[J]. 北京航空航天大学学报, 2001, 27(1): 54-56.

    SHEN X L, WANG L L. Aerodynamic analysis of grid fin-body configurations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 54-56(in Chinese).
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  505
  • HTML全文浏览量:  144
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-07
  • 录用日期:  2020-06-13
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答