Numerical simulation and test investigation on interference characteristics of grid fins with missile body at supersonic speed
-
摘要:
对于呈十字型布局的栅格舵与弹身组合体来说,在有迎角存在时,位于弹身垂直平面的栅格舵会处于弹体头部分离涡的干扰区,而位于弹身水平面的栅格舵主要受弹体上洗流的影响,2种安装形式的栅格舵的气动特性会有较大差异。为研究弹身对栅格舵气动特性的干扰影响,基于典型栅格舵及栅格舵与弹身组合体布局,利用数值模拟方法对比分析了有无弹身干扰情况下栅格舵的超声速气动特性,分析了弹身对不同安装位置栅格舵的扰流特性、载荷分布,研究了由单独栅格舵气动特性转换到存在弹身干扰时栅格舵气动特性的修正方法。通过风洞验证试验,获取了2种不同安装方式栅格舵试验数据差异,验证了洗流修正方法的可行性,为建立面向工程应用的栅格舵高速风洞试验与数据修正技术提供了数据支撑。
Abstract:For cross layout grid fin-missile body configuration, the vertical grid fins will be exposed to the interference regions of head separated vortices, and thus the horizontal grid fins will be immersed in the missile body upward flow while a certain body's angle of attack exists. Therefore, there will be a greater difference in the aerodynamic characteristics of grid fins between two installation forms: vertically and horizontally. In order to investigate the missile body interference on the grid fins, numerical simulations based on typical grid fin and grid fin-missile body configuration were conducted at supersonic speed. The aerodynamic characteristics of single grid fin and grid fin with body interference were compared. Flow characteristics and load distributions of grid fins installed differently were analyzed. The correction method for the aerodynamic characteristics of grid fins with body interference obtained from the aerodynamic characteristics of single grid fin was studied. Moreover, by wind tunnel validation tests, data differences of grid fins in different installation ways were obtained, and the correction method obtained from the cross upward flow theory of the body was explored to be practicable. Thus, it provides data supports for the high-speed wind tunnel tests of grid fins and data correction technology facing engineering application.
-
Key words:
- grid fin /
- upward flow /
- normal force /
- correction method /
- missile body interference
-
表 1 栅格舵外形尺寸
Table 1. Main dimensions of grid fins
H/D L/D C/D h0/D 0.875 0.875 0.25 0.375 -
[1] 黎汉华, 石玉红. 栅格舵国内外研究现状及发展趋势[J]. 导弹与航天运载技术, 2008, 298(6): 27-30. doi: 10.3969/j.issn.1004-7182.2008.06.007LI H H, SHI Y H. Current status and development trend of grid fin[J]. Missiles and Space Vehicles, 2008, 298(6): 27-30(in Chinese). doi: 10.3969/j.issn.1004-7182.2008.06.007 [2] BROOKS R A, BURKHALTER J E. Experimental and analytical analysis of grid fin configurations[J]. Journal of Aircraft, 1989, 26(9): 885-887. doi: 10.2514/3.45856 [3] BURKHALTER J E, HARTFIELD R J, LELEUX T M, et al. Nonlinear aerodynamic analysis of grid fin configurations[J]. Journal of Aircraft, 1995, 32(3): 547-554. doi: 10.2514/3.46754 [4] WASHINGTON W D, MILLER M S. Experimental investigation of grid fin aerodynamics: A synopsis of nine wind tunnel and three flight tests[C]//Proceedings of the NATO RTO Applied Vehicle Technology Panel Symposium on Missile Aerodynamics. Cedex: NATO Research and Technology Organization, 1998: 1-14. [5] DESPIRITO J, EDGE H L, WEINACHT P, et al. CFD analysis of grid fins for maneuvering missiles[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 10-13. [6] DUPUIS A, BERNER C. Aerodynamic aspects of a grid finned projectile at subsonic and supersonic velocities[C]//Proceedings of 19th International Symposium of Ballistics. Interlaken: International Ballistics Committee, 2001: 495-502. [7] DESPIRITO J, VAUGHN M E, WASHINGTON W D, et al. Subsonic flow CFD investigation of canard-controlled missile with planar and grid fins[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003: 6-9. [8] BURKHALTER J E. Grid fins for missile applications in supersonic flow[C]//34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996: 15-18. [9] THEERTHAMALAI P, MANISEKARAN S, NAGARATHINAM M. A prediction method for aerodynamic characterization of grid-fin configurations at supersonic speeds[C]//23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005: 1-8. [10] THEERTHAMALAI P, NAGARATHINAM M. Aerodynamic analysis of grid-fin configurations at supersonic speeds[J]. Journal of Spacecraft and Rockets, 2006, 43(4): 750-756. doi: 10.2514/1.16741 [11] THEERTHAMALAI P. Aerodynamic characterization of grid fins at subsonic speeds[J]. Journal of Aircraft, 2007, 44(2): 694-697. doi: 10.2514/1.27653 [12] 余奇华, 敬代勇. 基于非结构网格的格栅舵导弹数值模拟计算[J]. 航空兵器, 2009, 2(1): 15-21. doi: 10.3969/j.issn.1673-5048.2009.01.004YU Q H, JIN D Y. Numerical simulation for a grid fin missile based on unstructured mesh[J]. Aero Weaponry, 2009, 2(1): 15-21(in Chinese). doi: 10.3969/j.issn.1673-5048.2009.01.004 [13] 陆中荣, 沈遐龄, 童自力, 等. 栅格舵空气动力特性的计算与分析[J]. 北京航空航天大学学报, 1996, 22(5): 575-580. https://bhxb.buaa.edu.cn/CN/abstract/abstract11052.shtmlLU Z R, SHEN X L, TONG Z L, et al. Calculation and analysis of grid fin configurations[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(5): 575-580(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract11052.shtml [14] 贝洛齐尔科夫斯基C M, 奥德诺弗尔J A, 萨芬I O, 等. 栅格翼[M]. 王丹阳, 杜早力, 刘志珩, 等译. 北京: 中国运载火箭技术研究院第一设计部, 1994: 278-286.BELOZILKOVSKY C M, ODENOVEI J A, SAFIN I O, et al. Grid fins[M]. WANG D Y, DU Z L, LIU Z Y, et al, translated. Beijing: The First Design Department of China Academy of Carrier Rocket, 1994: 278-286(in Chinese). [15] 沈遐龄, 王丽丽. 栅格舵和机身组合体的气动特性计算与分析[J]. 北京航空航天大学学报, 2001, 27(1): 54-56.SHEN X L, WANG L L. Aerodynamic analysis of grid fin-body configurations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 54-56(in Chinese).