留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高速飞行器平尾大迎角气动弹性特性研究

郝帅 马铁林 王一 张子伦 罗文莉 向锦武

郝帅, 马铁林, 王一, 等 . 超高速飞行器平尾大迎角气动弹性特性研究[J]. 北京航空航天大学学报, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089
引用本文: 郝帅, 马铁林, 王一, 等 . 超高速飞行器平尾大迎角气动弹性特性研究[J]. 北京航空航天大学学报, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089
HAO Shuai, MA Tielin, WANG Yi, et al. Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089(in Chinese)
Citation: HAO Shuai, MA Tielin, WANG Yi, et al. Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 983-993. doi: 10.13700/j.bh.1001-5965.2020.0089(in Chinese)

超高速飞行器平尾大迎角气动弹性特性研究

doi: 10.13700/j.bh.1001-5965.2020.0089
基金项目: 

国家自然科学基金 91216102

详细信息
    作者简介:

    郝帅  男, 博士研究生。主要研究方向: 飞行器总体设计、流固耦合技术、多学科优化技术

    马铁林  男, 博士, 研究员, 博士生导师。主要研究方向: 飞行器总体设计、无人机技术、多学科优化技术

    王一  男, 硕士研究生。主要研究方向: 飞行器总体设计、多学科优化技术

    通讯作者:

    马铁林, E-mail: matielin@buaa.edu.cn

  • 中图分类号: V215.3

Aeroelastic characteristics of hypersonic vehicle tail at high angle of attack

Funds: 

National Natural Science Foundation of China 91216102

More Information
  • 摘要:

    临近空间超高速飞行器在飞行过程中受到外部干扰作用时会出现大迎角飞行姿态,此时需大角度偏转全动平尾进行配平,带来平尾大迎角下的气动弹性问题。采用计算流体力学/计算固体力学/计算热力学(CFD/CSD/CTD)耦合方法分析了一种超高速飞行器全动平尾的气动弹性特性,重点研究了大迎角下平尾的气动响应及结构变形特点。结果表明:各迎角时的气动力曲线均出现波动,随时间变化逐渐衰减至平衡位置。迎角越大,初始振幅越大,气动力系数减小的比例越大,但随时间衰减得越快。平尾存在弯曲/扭转耦合现象,结构变形导致表面压力分布发生变化,使得整体压力减小、升力系数降低,迎角越大现象越明显。平尾最大应力在迎角30°时达1.2 GPa,已达到所用镍合金材料的屈服强度极限。应在结构设计时在翼轴与平尾接触部位附近加强,或在控制方案设计时限制全动平尾的工作角度。结构发生轴向与法向变形,轴向变形主要由气动热引起,法向变形由气动力和气动热共同引起。

     

  • 图 1  全动尾翼模型

    Figure 1.  Model of all-movable tail

    图 2  转轴形式

    Figure 2.  Form of rotating shaft

    图 3  尾翼/翼轴系统

    Figure 3.  System of tail/rotating shaft

    图 4  预估-校正迭代方法

    Figure 4.  Prediction-correction iterative method

    图 5  计算网格

    Figure 5.  Computational grid

    图 6  表面压力分布对比

    Figure 6.  Comparison of surface pressure distribution

    图 7  表面热流分布对比

    Figure 7.  Comparison of surface heat flux distribution

    图 8  不同迎角下气动力响应曲线

    Figure 8.  Aerodynamic response curves at different angles of attack

    图 9  表面压力系数分布云图

    Figure 9.  Distribution contour of surface pressure coefficients

    图 10  下表面压力系数分布曲线

    Figure 10.  Distribution curves lower surface pressure coefficients

    图 11  流场压力分布正视图和后视图

    Figure 11.  Front and back view of pressure distribution in flow field

    图 12  尾翼结构变形和压力分布云图

    Figure 12.  Structure deformation and pressure distribution contour of tail

    图 13  结构应力分布云图

    Figure 13.  Structural stress distribution contour

    图 14  10°迎角位移随时间变化曲线

    Figure 14.  Displacement curves at 10° angle of attack over time

    图 15  不同迎角下rArC随时间变化曲线

    Figure 15.  Curves of rA and rC at different angles of attack over time

    图 16  A点温度和热流变化曲线

    Figure 16.  Temperature and heat flux curves of point A

    图 17  40°迎角温度分布云图

    Figure 17.  Temperature distribution contour at 40° angle of attack

    图 18  结构轴向变形

    Figure 18.  Structure deformation along shaft direction

    图 19  结构法向变形

    Figure 19.  Structure deformation along normal direction

    表  1  全动尾翼几何参数

    Table  1.   Geometric parameters of all-movable tail

    参数 数值
    翼根弦长/m 0.63
    展长/m 0.22
    相对厚度 0.04
    面积/m2 0.15
    下载: 导出CSV

    表  2  钛合金材料参数

    Table  2.   Parameters of titanium alloy material

    参数 数值
    密度ρ/(kg·m-3) 4 400
    弹性模量E/GPa 75~109
    泊松比λ 0.34
    热膨胀系数α/(10-6 K-1) 9.2~11.0
    热导率k/(W·(m·K)-1) 6.8~11.8
    比热C/(J·(kg·K)-1) 610~702
    下载: 导出CSV

    表  3  镍合金材料参数

    Table  3.   Parameters of nickel alloy material

    参数 数值
    ρ/(kg·m-3) 8 240
    E/GPa 160~205
    λ 0.30
    α/(10-6 K-1) 11.8~18.7
    k/(W·(m·K)-1) 13.4~30.4
    C/(J·(kg·K)-1) 481~707
    下载: 导出CSV

    表  4  等效弹性常数

    Table  4.   Equivalent elastic constants

    参数 数值
    ρ/(kg·m-3) 924
    Ex/MPa 850~1 353
    Ey/MPa 605~963
    Ez/MPa 1 984~3 157
    α/(10-6 K-1) 13.3~18.6
    k/(W·(m·K)-1) 14.2~32.7
    C/(J·(kg·K)-1) 493~742
    λ 0.3
    下载: 导出CSV

    表  5  不同迎角下气动力响应

    Table  5.   Aerodynamic response at different angles of attack

    迎角/(°) CL减小量/% CD减小量/% 波动半衰期/s
    10 1 1 0.97
    20 3.6 4.7 0.73
    30 4.1 4.9 0.60
    40 5.1 6.6 0.48
    下载: 导出CSV
  • [1] OPPENHEIMER M W, DOMAN D B, MCNAMARA J J, et al. Viscous effects for a hypersonic vehicle model[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2008: 374-387.
    [2] YENTSCH R J, GAITONDE D V, KIMMEL R. Performance of turbulence modeling in simulation of the HIFiRE-1 flight test[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 117-127. doi: 10.2514/1.A32535
    [3] WROBLE V. SR-72 could be obsolete[J]. Aviation Week & Space Technology, 2013, 175(42): 10. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204110858977.html
    [4] LIGHTHILL M J. Oscillating airfoils at high Mach numbers[J]. Journal of Aeronautical Science, 1953, 20(6): 402-406. doi: 10.2514/8.2657
    [5] ASHLEY H, ZARTARIAN G. Piston-theory: A new aerodynamic tool for the aeroelastician[J]. Journal of Aeronautical Science, 1956, 23(12): 209-222.
    [6] LAUTEN W T J, LEVEY G M, ARMSTRONG W O. Investigation of an all-movable control surface at a Mach number of 6.86 for possible flutter[J]. Technical Report Archive & Image Library, 1958, 14(5): 19-22.
    [7] GOETZ R C. Effects of leading-edge bluntness on flutter characteristics of some square-planform double-wedge airfoils at a Mach number of 15.4[M]. Champaign: National Aeronautics and Space Administration, 1962: 10-19. http://www.zhangqiaokeyan.com/ntis-science-report_other_thesis/020711171744.html
    [8] HEEG J, ZEILER T A, POTOTZKY A S, et al. Aerothermoelastic analysis of a NASP demostrator model[C]//Proceedings of the 34th Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2013: 1993-1366.
    [9] LIU D D, YAO Z X, SARHADDI D, et al. From piston theory to a unified hypersonic-supersonic lifting surface method[J]. Journal of Aircraft, 1997, 34(3): 304-312. doi: 10.2514/2.2199
    [10] 陈劲松, 曹军. 超声速和高超声速翼型非定常气动力的一种近似计算方法[J]. 空气动力学学报, 1990, 8(3): 339-344. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199003014.htm

    CHEN J S, CAO J. An approximate calculating method of supersonic/hypersonic unsteady aerodynamic forces of airfoils[J]. Acta Aerodynamica Sinica, 1990, 8(3): 339-344(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX199003014.htm
    [11] 杨炳渊, 宋伟力. 用当地流活塞理论计算大攻角翼面超音速颤振[J]. 振动与冲击, 1995, 14(2): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ502.012.htm

    YANG B Y, SONG W L. Supersonic flutter calculation of a wing with attack angle by local flow piston theory[J]. Journal of Vibration and Shock, 1995, 14(2): 60-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ502.012.htm
    [12] MCNAMARA J J, FRIEDMANN P P. Flutter boundary identification for time-domain computational aeroelasticity[J]. AIAA Journal, 2007, 45(7): 1546-1555. doi: 10.2514/1.26706
    [13] MCNAMARA J J, CROWELL A R, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamics for hypersonic aeroelasticity[J]. Journal of Aircraft, 2010, 47(6): 1932-1945. doi: 10.2514/1.C000190
    [14] MCNAMARA J J, FRIEDMANN P P. Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future[J]. AIAA Journal, 2011, 49(6): 1089-1122. doi: 10.2514/1.J050882
    [15] 张伟伟, 叶正寅. 基于当地流活塞理论的气动弹性计算方法研究[J]. 力学学报, 2005, 37(5): 632-639. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200505015.htm

    ZHANG W W, YE Z Y. Numerical method of aeroelasticity based on local piston theory[J]. Acta Mechanica Sinica, 2005, 37(5): 632-639(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200505015.htm
    [16] GUPTA K, VOELKER L S. CFD-based aeroelastic analysis of the X-43 hypersonic flight vehicle[C]//39th Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2001.
    [17] GUPTA K, BACH C. Computational fluid dynamics-based aeroservoelastic analysis with Hyper-X applications[J]. AIAA Journal, 2007, 45(7): 1459-1471. doi: 10.2514/1.21992
    [18] GUPTA K K, VOELKER L S. Aeroelastic simulation of hypersonic flight vehicles[J]. AIAA Journal, 2012, 50(3): 717-723. doi: 10.2514/1.J051386
    [19] ZENG K C, XIANG J W, LI D C. Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2013, 26(4): 831-840. doi: 10.1016/j.cja.2013.06.001
    [20] 史晓鸣, 梅睿, 苏轶龙, 等. 舵轴位置对全动舵面气动弹性稳定性影响[J]. 噪声与振动控制, 2016, 36(3): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603018.htm

    SHI X M, MEI R, SU Y L, et al. Influence of rudder shaft location on aeroelastic stablity of an all-moving rudder[J]. Noise and Vibration Control, 2016, 36(3): 81-84(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603018.htm
    [21] 王文全, 张立翔. 计算流固耦合动力学及其应用[M]. 北京: 中国水利水电出版社, 2015: 2-12.

    WANG W Q, ZHANG L X. Computational fluid-structure interaction dynamics and applications[M]. Beijing: China Water & Power Press, 2015: 2-12(in Chinese).
    [22] 聂雪媛, 黄程德, 杨国伟. 基于CFD/CSD耦合的结构几何非线性静气动弹性数值方法研究[J]. 振动与冲击, 2016, 35(8): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm

    NIE X Y, HUANG C D, YANG G W. Numerical analysis for aeroelastic with structural geometrical nonlinearity using a CFD/CSD coupled method[J]. Journal of Vibration and Shock, 2016, 35(8): 48-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201608008.htm
    [23] 周迪, 陆志良, 郭同庆, 等. 基于CFD/CSD耦合的叶轮机叶片失速颤振计算[J]. 航空学报, 2015, 36(4): 1076-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504005.htm

    ZHOU D, LU Z L, GUO T Q, et al. Stall flutter computation of turbomachinery blade based on a CFD/CSD coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1076-1085(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201504005.htm
    [24] DUKOWICZ J K, KODIS J W. Accurate conservative remapping(rezoning) for arbitrary Lagrangian-Eulerian computations[J]. Journal on Scientific and Statistical Computing, 1987, 8(3): 305-321. doi: 10.1137/0908037
    [25] BENSON D J, HALLQUIST J O. A single surface contact algorithm for the post-buckling analysis of shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 78(2): 141-163. doi: 10.1016/0045-7825(90)90098-7
    [26] JANSEN K, SHAKIB F, HUGHES T J R. Fast projection algorithm for unstructured meshes[J]. Computational Nonlinear Mechanics in Aerospace Engineering, 1992, 146(5): 175-204.
    [27] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8[C]//Proceedings of the AIAA 22nd Thermophysics Conference. Reston: AIAA, 1987.
  • 加载中
图(19) / 表(5)
计量
  • 文章访问数:  762
  • HTML全文浏览量:  187
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 录用日期:  2020-05-30
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答