留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空图卷积网络的无人机网络入侵检测方法

陈卓 吕娜 陈坤 张彦晖 高维廷

陈卓, 吕娜, 陈坤, 等 . 基于时空图卷积网络的无人机网络入侵检测方法[J]. 北京航空航天大学学报, 2021, 47(5): 1068-1076. doi: 10.13700/j.bh.1001-5965.2020.0095
引用本文: 陈卓, 吕娜, 陈坤, 等 . 基于时空图卷积网络的无人机网络入侵检测方法[J]. 北京航空航天大学学报, 2021, 47(5): 1068-1076. doi: 10.13700/j.bh.1001-5965.2020.0095
CHEN Zhuo, LYU Na, CHEN Kun, et al. UAV network intrusion detection method based on spatio-temporal graph convolutional network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1068-1076. doi: 10.13700/j.bh.1001-5965.2020.0095(in Chinese)
Citation: CHEN Zhuo, LYU Na, CHEN Kun, et al. UAV network intrusion detection method based on spatio-temporal graph convolutional network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 1068-1076. doi: 10.13700/j.bh.1001-5965.2020.0095(in Chinese)

基于时空图卷积网络的无人机网络入侵检测方法

doi: 10.13700/j.bh.1001-5965.2020.0095
基金项目: 

国家自然科学基金 61703427

国家自然科学基金 61701521

详细信息
    作者简介:

    陈卓 男, 硕士研究生。主要研究方向:机器学习、通信网络

    吕娜 女, 博士, 教授, 博士生导师。主要研究方向:通信网络、航空数据链、机器学习

    通讯作者:

    吕娜, E-mail: lvnn2007@163.com

  • 中图分类号: V19;TP393

UAV network intrusion detection method based on spatio-temporal graph convolutional network

Funds: 

National Natural Science Foundation of China 61703427

National Natural Science Foundation of China 61701521

More Information
  • 摘要:

    无人机网络相比地面网络具有节点快速移动、拓扑结构变换频繁和通信链路不可靠的特点,传统的针对地面网络的入侵检测方法难以适用。针对无人机网络的时空动态特性进行建模,提出了一种无人机网络的入侵检测方法——基于注意力机制的时空图卷积网络(ATGCN)。将图卷积网络和门控递归单元组合为时空图卷积网络,从复杂多变的数据中提取网络的时空演变特征,通过注意力机制提取和入侵检测最相关的特征,输入支持向量机进行分类预测。多个数据集的实验分析表明:所提方法能够适应无人机网络的动态性和不稳定性,相比传统检测方法准确率高且误报率低,具有良好的鲁棒性和适应性。

     

  • 图 1  无人机网络时空结构

    Figure 1.  Spatio-temporal structure of UAV network

    图 2  无人机网络入侵检测框架

    Figure 2.  UAV network intrusion detection framework

    图 3  GRU模型

    Figure 3.  GRU model

    图 4  不同方法在不同丢包率环境下的性能对比

    Figure 4.  Performance changes of different methodswith different packet loss rates

    图 5  不同方法在不同噪声比例下的性能对比

    Figure 5.  Performance changes of different methods with different noise ratios

    图 6  方法设计对检测效果的影响

    Figure 6.  Effect of method design on detection result

    表  1  数据集相关信息

    Table  1.   Relevant information of datasets

    数据集 网络攻击类别
    WSN-DS 黑洞攻击,灰洞攻击,泛洪攻击,调度攻击
    NSL-KDD 拒绝服务攻击,监视和其他探测活动,远程机器的非法访问,普通用户对本地超级用户特权的非法访问
    CICIDS2017 FTP暴力破解、SSH暴力破解,拒绝服务攻击,心血漏洞,网页攻击,渗透攻击,僵尸网络
    下载: 导出CSV

    表  2  仿真参数

    Table  2.   Simulation parameters

    参数 数值
    仿真区域/(m×m) 1 000×1 000
    节点数量 50
    节点移动模型 随机路径模型
    信道容量/(Mbit·s-1) 5
    最大移动速度/(m·s-1) 20
    攻击节点比例/% 10、20、30
    路由协议类型 AODV
    采样周期/s 15
    下载: 导出CSV

    表  3  UAV_set数据集相关信息

    Table  3.   Relevant information of UAV_set dataset

    流量类别 数量
    正常 2 000
    窃听攻击 500
    DDoS攻击 700
    黑洞攻击 110
    下载: 导出CSV

    表  4  不同方法的实验结果比较

    Table  4.   Comparison of experimental results among different methods

    方法 准确率 误报率
    WSN-DS NSL-KDD CICIDS2017 UAV_set WSN-DS NSL-KDD CICIDS2017 UAV_set
    IF 0.457 0.916 0.735 0.855 0.368 0.145 0.235 0.124
    LOF 0.435 0.536 0.669 0.892 0.134 0.127 0.168 0.125
    RF 0.886 0.919 0.894 0.884 0.101 0.074 0.096 0.244
    MCD 0.610 0.716 0.793 0.863 0.190 0.126 0.122 0.223
    OCSVM 0.605 0.880 0.793 0.783 0.201 0.174 0.155 0.117
    VAE 0.887 0.916 0.956 0.922 0.027 0.016 0.017 0.022
    DAGMM 0.968 0.987 0.992 0.995 0.028 0.044 0.024 0.010
    ATGCN 0.988 0.998 0.996 0.997 0.019 0.007 0.016 0.009
    下载: 导出CSV
  • [1] 何道敬, 杜晓, 乔银荣, 等.无人机信息安全研究综述[J].计算机学报, 2019, 42(5):150-168. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201905010.htm

    HE D J, DU X, QIAO Y R, et al.A survey on cyber security of unmanned aerial vehicles[J].Chinese Journal of Computers, 2019, 42(5):150-168(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201905010.htm
    [2] JAWHAR I, MOHAMED N, AL-JAROODI J, et al.Communication and networking of UAV-based systems:Classification and associated architectures[J].Journal of Network and Computer Applications, 2017, 84:93-108. doi: 10.1016/j.jnca.2017.02.008
    [3] KUMAR N, KUMAR U.Anomaly-based network intrusion detection: An outlier detection techniques[C]//International Conference on Soft Computing and Pattern Recognition.Berlin: Springer, 2016: 262-269.
    [4] ZIMEK A, FILZMOSER P.There and back again:Outlier detection between statistical reasoning and data mining algorithms[J].Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2018, 8(6):e1280. doi: 10.1002/widm.1280
    [5] DIVYA K, KUMARAN N S.Survey on outlier detection techniques using categorical data[J].International Research Journal of Engineering and Technology, 2016, 3(12):899-904. http://www.researchgate.net/publication/289244225_A_Survey_On_Outlier_Detection_Technique_In_Streaming_Data_Using_Data_Clustering_Approach
    [6] DESHMUKH M M K, KAPSE A.A survey on outlier detection technique in streaming data using data clustering approach[J].International Journal of Engineering and Computer Science, 2016, 5(1):15453-15456. http://www.researchgate.net/publication/289244225_A_Survey_On_Outlier_Detection_Technique_In_Streaming_Data_Using_Data_Clustering_Approach
    [7] JIANG F, LIU G, DU J, et al.Initialization of K-modes clustering using outlier detection techniques[J].Information Sciences, 2016, 332:167-183. doi: 10.1016/j.ins.2015.11.005
    [8] CHEN J, SATHE S, AGGARWAL C, et al.Outlier detection with autoencoder ensembles[C]//Proceedings of the 2017 SIAM International Conference on Data Mining, 2017: 90-98.
    [9] KWON D, KIM H, KIM J, et al.A survey of deep learning-based network anomaly detection[J].Cluster Computing, 2019, 22:949-961. doi: 10.1007/s10586-017-1117-8
    [10] ZONG B, SONG Q, MIN M R, et al.Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//ICLR, 2018: 1-19.
    [11] DOMINGUES R, FILIPPONE M, MICHIARDI P, et al.A comparative evaluation of outlier detection algorithms:Experiments and analyses[J].Pattern Recognition, 2018, 74:406-421. doi: 10.1016/j.patcog.2017.09.037
    [12] CHAWLA A, LEE B, FALLON S, et al.Host based intrusion detection system with combined CNN/RNN model[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin: Springer, 2018: 149-158.
    [13] SHONE N, NGOC T N, PHAI V D, et al.A deep learning approach to network intrusion detection[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1):41-50. doi: 10.1109/TETCI.2017.2772792
    [14] TAN X, SU S, ZUO Z, et al.Intrusion detection of UAVs based on the deep belief network optimized by PSO[J].Sensors, 2019, 19(24):5529. doi: 10.3390/s19245529
    [15] KIM G, YI H, LEE J, et al.LSTM-based system-call language modeling and robust ensemble method for designing host-based intrusion detection systems[EB/OL].(2016-11-06)[2020-03-01].https://arxiv.org/abs/1611.01726.
    [16] WANG W, SHENG Y, WANG J, et al.HAST-IDS:Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J].IEEE Access, 2017, 6:1792-1806. http://ieeexplore.ieee.org/document/8171733
    [17] ZHANG Z, CUI P, ZHU W.Deep learning on graphs: A survey[EB/OL].(2018-12-11)[2020-03-01].https://arxiv.org/abs/1812.04202v1.
    [18] ZHENG J, LI D.GCN-TC: Combining trace graph with statistical features for network traffic classification[C]//IEEE International Conference on Communications.Piscataway: IEEE Press, 2019: 1-6.
    [19] HSU D.Anomaly detection on graph time series[EB/OL].(2017-08-09)[2020-03-01].https://arxiv.org/abs/1708.02975.
    [20] ZHAO L, SONG Y, ZHANG C, et al.T-GCN:A temporal graph convolutional network for traffic prediction[J].IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9):3848-3858. doi: 10.1109/TITS.2019.2935152
    [21] DEY R, SALEMT F M.Gate-variants of gated recurrent unit (GRU) neural networks[C]//IEEE 60th International Midwest Symposium on Circuits and Systems.Piscataway: IEEE Press, 2017: 1597-1600.
    [22] LEE J B, ROSSI R A, KIM S, et al.Attention models in graphs:A survey[J].ACM Transactions on Knowledge Discovery from Data (TKDD), 2019, 13(6):1-25.
    [23] TAVALLAEE M, BAGHERI E, LU W, et al.A detailed analysis of the KDD CUP 99 data set[C]//IEEE Symposium on Computational Intelligence for Security and Defense Applications.Piscataway: IEEE Press, 2009: 1-6.
    [24] SHARAFALDIN I, LASHKARI A H, GHORBANI A A.Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy, 2018: 108-116.
    [25] ALMOMANI I, AL-KASASBEH B, AL-AKHRAS M.WSN-DS:A dataset for intrusion detection systems in wireless sensor networks[J].Journal of Sensors, 2016, 2016:1-16. http://www.researchgate.net/publication/308751926_WSN-DS_A_Dataset_for_Intrusion_Detection_Systems_in_Wireless_Sensor_Networks?ivk_sa=1024320u
    [26] 张冰涛, 王小鹏, 王履程, 等.基于图论的MANET入侵检测方法[J].电子与信息学报, 2018, 40(6):1446-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806025.htm

    ZHANG B T, WANG X P, WANG L C, et al.Intrusion detection method for MANET based on graph theory[J].Journal of Electronics and Information Technology, 2018, 40(6):1446-1452(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201806025.htm
    [27] SUN L, VERSTEEG S, BOZTAS S, et al.Detecting anomalous user behavior using an extended isolation forest algorithm: An enterprise case study[EB/OL].(2016-09-21)[2020-03-01].https://arxiv.org/abs/1609.06676.
    [28] 杨晓晖, 张圣昌.基于多粒度级联孤立森林算法的异常检测模型[J].通信学报, 2019, 40(8):133-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201908013.htm

    YANG X H, ZHANG S C.Anomaly detection model based on multi-grained cascade isolation forest algorithm[J].Journal on Communications, 2019, 40(8):133-142(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201908013.htm
    [29] BHARAMBE A, RAVINDRAN R, SUCHDEV R, et al.A robust anomaly detection system[C]//2014 International Conference on Advances in Engineering & Technology Research.Piscataway: IEEE Press, 2014: 1-7.
    [30] SHANG W, ZENG P, WAN M, et al.Intrusion detection algorithm based on OCSVM in industrial control system[J].Security and Communication Networks, 2016, 9(10):1040-1049. doi: 10.1002/sec.1398
    [31] LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A, et al.Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in iot[J].Sensors, 2017, 17(9):1967. doi: 10.3390/s17091967
    [32] ZHANG Y, SZABO C, SHENG Q Z.Cleaning environmental sensing data streams based on individual sensor reliability[C]//International Conference on Web Information Systems Engineering.Berlin: Springer, 2014: 405-414.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  967
  • HTML全文浏览量:  333
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 录用日期:  2020-06-13
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答