-
摘要:
为了保证北斗系统广域差分服务的平稳过渡,北斗三号系统(BDS-3)通过GEO卫星B1I/B3I信号播发北斗二号协议广域差分改正信息,包括等效钟差改正数与格网点电离层信息。分析了增加BDS-3卫星后,等效钟差改正数和格网点电离层信息的特征,并对BDS-2和BDS-3的用户差分距离误差(UDRE)进行了对比。联合BDS-2和BDS-3实测数据,对BDS-3广域差分服务定位精度进行了评估。分析结果表明:BDS-2卫星广播星历空间信号用户等效距离误差(UERE)约为1 m,经过等效钟差改正数后,用户差分距离误差约为0.3 m;BDS-3卫星广播星历空间信号用户等效距离误差约为0.4 m,经过等效钟差改正数后,用户差分距离误差约为0.2 m。等效钟差改正数可以修正广播电文更新带来的空间信号阶跃误差,显著提升卫星空间信号精度。与基本导航系统播发的Klobuchar 8模型,广域差分系统所播发的格网点电离层信息可将电离层误差修正精度提高约18%。与单独BDS-2卫星相比,BDS-2/BDS-3卫星联合条件下,基本导航的单频用户和双频用户定位精度可分别提升26%和41%;广域差分服务的单频用户定位精度为2.4 m,双频用户定位精度为1.7 m,单频用户和双频用户定位精度分别提升13%和41%。
-
关键词:
- 北斗三号系统(BDS-3) /
- B1I/B3I /
- 等效钟差 /
- 电离层格网信息 /
- 广域差分服务精度
Abstract:In order to ensure the smooth transition of the wide-area differential service of the Beidou system, the Beidou-3 System (BDS-3) uses D2 navigation message on GEO satellite to broadcast the equivalent clock correction and ionospheric grid information on B1I/B3I frequency. This paper analyzes the characteristics of the equivalent clock correction and ionospheric grid information after adding the BDS-3 satellite, and compares the User Differential Range Error (UDRE) of satellite between the BDS-2 and the BDS-3. Combined with the measured data of BDS-2 and BDS-3, this paper also evaluates the positioning accuracy of wide-area differential service of BDS-3. The analysis results show that, after using the equivalent clock correction, the User Equivalent Range Error (UERE) of the BDS-2 satellite changes from approximately 1 meter to approximately 0.3 meters, while the BDS-3 satellite UERE changes from approximately 0.4 meters to approximately 0.2 meters. The results show that the equivalent clock correction can correct the space signal step error brought by the update of the broadcast message, and significantly improve the satellite space signal accuracy. Compared with the Klobuchar 8 model broadcast by the basic navigation system, the ionospheric grid information broadcast by the wide-area differential system can improve the accuracy of ionospheric error correction by about 18%. In comparison with BDS-2 single system, the accuracy of single-frequency positioning for BDS-2/BDS-3 can be improved by 26%, while that of dual-frequency positioning can be improved by 41%. The positioning accuracy of single-frequency users for wide-area differential services is 2.4 meters, and the positioning accuracy of dual-frequency users is 1.7 meters, which is improved by 13% and 41% respectively.
-
表 1 北斗二号协议广域差分服务的信息类别及更新周期[12]
Table 1. Information types and update period of the wide area differentiated services of BDS-2 protocol[12]
北斗系统增强信息 更新周期/s 参数范围 等效钟差改正数Δt 18 -409.6~819.2 m 用户差分距离误差指数(UDREI) 3 0~15 格网点电离层信息(Ion) 180 0~63.625 m(覆盖范围为东经70°~145°,北纬7.5°~55°,按经纬度5°×2.5°进行划分) 格网点电离层垂直延迟改正数误差指数(GIVEI) 180 0~15 表 2 北斗二号协议广域差分服务所增强的卫星信息
Table 2. Information of satellites enhanced by the wide area differential services of BDS-2 protocol
卫星编号 归属 卫星类型 卫星编号 归属 卫星类型 C01 BDS-2 GEO C02 BDS-2 GEO C03 BDS-2 GEO C04 BDS-2 GEO C05 BDS-2 GEO C06 BDS-2 IGSO C07 BDS-2 IGSO C08 BDS-2 IGSO C09 BDS-2 IGSO C10 BDS-2 IGSO C11 BDS-2 MEO C12 BDS-2 MEO C13 BDS-2 IGSO C14 BDS-2 MEO C16 BDS-2 IGSO C18 BDS-2 GEO C19 BDS-3 MEO C20 BDS-3 MEO C21 BDS-3 MEO C22 BDS-3 MEO C23 BDS-3 MEO C24 BDS-3 MEO C25 BDS-3 MEO C26 BDS-3 MEO C27 BDS-3 MEO C28 BDS-3 MEO C29 BDS-3 MEO C30 BDS-3 MEO C32 BDS-3 MEO C33 BDS-3 MEO C34 BDS-3 MEO C35 BDS-3 MEO C36 BDS-3 MEO C37 BDS-3 MEO C38 BDS-3 IGSO C39 BDS-3 IGSO C40 IGSO MEO C43 BDS-3 MEO C41 BDS-3 MEO C45 BDS-3 MEO C44 BDS-3 MEO C59 BDS-3 GEO 表 3 C1和C2常量取值
Table 3. Constant values of C1 and C2
卫星类型 MEO GEO/IGSO C1 0.981 0.992 C2 0.136 0.088 表 4 北斗卫星UERE和UDRE统计
Table 4. Statistics of UERE and UDRE for BDS satellites
卫星编号 UERE/m UDRE/m 精度提升比例/% 卫星编号 UERE/m UDRE/m 精度提升比例/% C01 0.77 0.25 67.5 C19 0.24 0.1 58.3 C02 0.62 0.12 80.6 C20 0.69 0.15 78.3 C03 0.28 0.33 -17.9 C21 0.43 0.13 69.8 C04 0.63 0.25 60.3 C22 0.32 0.18 43.8 C05 1.97 0.44 77.7 C23 0.33 0.09 72.7 C06 1.21 0.37 69.4 C24 0.35 0.12 65.7 C07 0.85 0.46 45.9 C25 0.46 0.19 58.7 C08 0.97 0.26 73.2 C26 0.43 0.16 62.8 C09 0.98 0.29 70.4 C27 0.55 0.14 74.5 C10 1.02 0.17 83.3 C28 0.41 0.19 53.7 C11 0.67 0.19 71.6 C29 0.38 0.19 50.0 C12 1.61 0.2 87.6 C30 0.3 0.14 53.3 C13 1.42 0.16 88.7 C32 0.26 0.1 61.5 C14 1.56 0.61 60.9 C33 0.45 0.17 62.2 C16 1.09 0.23 78.9 C34 0.32 0.13 59.4 C35 0.54 0.29 46.3 C36 0.28 0.15 46.4 C37 0.39 0.22 43.6 均值 1.04 0.29 66.65 均值 0.40 0.16 58.94 表 5 仅BDS-2和BDS-2/BDS-3的基本导航与广域差分单频定位结果统计
Table 5. Statistics of single-frequency positioning results on two modes of basic navigation and wide-area differential for single BDS-2 and combination of BDS-2/BDS-3
m 测站编号 BDS-2 BDS-2 & BDS-3 基本导航 广域差分 基本导航 广域差分 水平 高程 水平 高程 水平 高程 水平 高程 STA1 1.98 3.83 1.20 2.27 1.27 2.88 0.83 2.03 STA2 1.66 3.31 1.12 2.04 1.09 2.68 0.75 1.96 STA3 1.13 3.34 1.82 1.80 0.84 2.80 1.12 2.27 STA4 1.76 3.35 1.21 2.21 1.77 2.96 0.83 1.98 STA5 2.14 2.87 1.55 2.12 1.43 2.53 1.25 2.00 STA6 1.55 4.15 1.33 2.53 0.99 3.19 0.98 2.54 STA7 1.34 3.93 1.00 2.87 0.93 3.21 0.77 2.88 STA8 1.39 4.29 1.09 3.13 0.94 3.25 0.77 2.62 STA9 1.77 3.22 1.30 1.79 1.01 2.35 0.74 1.58 STA10 2.86 4.87 1.78 3.07 1.47 2.34 1.47 2.07 均值 1.76 3.72 1.34 2.38 1.17 2.82 0.95 2.19 表 6 仅BDS-2和BDS-2/BDS-3的基本导航与广域差分双频定位结果统计
Table 6. Statistics of dual-frequency positioning results on two modes of basic navigation and wide-area differential for single BDS-2 and combination of BDS-2/BDS-3
m 测站编号 BDS-2 BDS-2/BDS-3 基本导航 广域差分 基本导航 广域差分 水平 高程 水平 高程 水平 高程 水平 高程 STA1 3.27 4.29 2.37 3.24 1.76 2.19 1.05 1.42 STA2 2.13 3.02 0.95 1.57 1.12 1.93 0.50 0.96 STA3 1.50 2.66 1.30 2.25 1.10 2.04 0.79 1.58 STA4 1.42 2.58 0.79 2.29 1.01 2.09 0.51 1.94 STA5 3.10 4.98 2.04 3.48 1.59 3.14 1.21 2.22 STA6 2.04 4.20 1.22 2.55 1.11 2.59 0.70 1.54 STA7 2.00 3.54 0.95 1.87 1.25 2.19 0.64 1.36 STA8 2.13 4.56 1.14 3.17 1.26 2.61 0.73 1.74 STA9 2.53 3.31 1.30 1.93 1.21 2.40 0.57 1.28 STA10 3.45 5.98 1.42 3.53 1.28 2.36 0.69 1.60 均值 2.36 3.91 1.35 2.59 1.27 2.35 0.74 1.56 -
[1] PALMA V, SALVATORI P, NERI A, et al. Augmentation and integrity monitoring network and EGNOS performance comparison for train positioning[C]//Proceedings of the IEEE European Signal Processing. Piscataway: IEEE Press, 2014: 186-190. [2] HEßELBARTH A, WANNINGER L. SBAS orbit and satellite clock corrections for precise point positioning[J]. GPS Solutions, 2013, 17(4): 465-473. doi: 10.1007/s10291-012-0292-6 [3] ENGE P, WALTER T, PULLEN S, et al. Wide area augmentation of the global positioning system[J]. Proceedings of the IEEE, 2002, 84(8): 1063-1088. http://ieeexplore.ieee.org/document/533954/ [4] KIM E, WALTER T, POWELL J D. Wide area augmentation system-based flight inspection system[J]. Journal of Aircraft, 2008, 45(2): 614-621. doi: 10.2514/1.32531 [5] MANABE H. Status of MSAS: MTSAT satellite-based augmentation system[C]//Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 2008: 1032-1059. [6] SAKAI T, TASHIRO H. MSAS status[C]//Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2013: 2343-2360. [7] GREWAL M S. Space-based augmentation for global navigation satellite systems[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59(3): 497-503. doi: 10.1109/TUFFC.2012.2220 [8] FELSKI A, NOWAK A. On EGNOS monitoring in local conditions[J]. Artificial Satellites, 2013, 48(2): 85-92. doi: 10.2478/arsa-2013-0007 [9] FELSKI A, NOWAK A, WOŹNIAK T. Accuracy and availability of EGNOS-results of observations[J]. Artificial Satellites, 2011, 46(3): 111-118. http://www.oalib.com/paper/1319586 [10] NANDULAL S, RAO C B, INDI C L, et al. Evaluation of real-time position accuracy and LNAV/VNAV service availability of GAGAN SBAS (wide area differential GPS) over Indian region[C]//Tyrrhenian International Workshop on Digital Communications-enhanced Surveillance of Aircraft & Vehicles. Piscataway: IEEE Press, 2008: 1-6. [11] 陈金平, 潘艳, 高为广. 日本和印度区域卫星导航系统进展与分析[J]. 导航, 2008, 44(1): 6-10.CHEN J P, PAN Y, GAO W G. Progress and analysis of Japan and Indian regional navigation and satellite system[J]. Navigation, 2008, 44(1): 6-10(in Chinese). [12] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号B3I (3.0版)[EB/OL]. (2019-02-27)[2020-01-08]. http://www.beidou.gov.cn.CSNO.BeiDou navigation satellite system signal in space interface control document open service signal B3I(Version 3.0)[EB/OL]. (2019-02-27)[2020-01-08]. http://www.beidou.gov.cn (in Chinese). [13] ZHOU S S, HU X G, WU B, et al. Orbit determination and time synchronization for a GEO/IGSO satellite navigation constellation with regional tracking network[J]. Science China Physics, Mechanics and Astronomy, 2011, 54(6): 1089-1097. doi: 10.1007/s11433-011-4342-9 [14] CAO Y L, HU X G, WU B, et al. The wide-area difference system for the regional satellite navigation system of COMPASS[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(7): 1307-1315. doi: 10.1007/s11433-012-4746-1 [15] WU X, ZHOU J, TANG B, et al. Evaluation of COMPASS ionospheric grid[J]. GPS Solutions, 2014, 18(4): 639-649. doi: 10.1007/s10291-014-0394-4 [16] KLOBUCHAR J A, KUNCHES J M. Eye on the ionosphere: Correction methods for GPS ionospheric range delay[J]. GPS Solutions, 2001, 5(2): 91-92. doi: 10.1007/PL00012892 [17] 常志巧, 胡小工, 郭睿, 等. CNMC与Hatch滤波方法比较及其在北斗相对定位中的精度分析[J]. 中国科学: 物理学力学天文学, 2015, 45(7): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201507008.htmCHANG Z Q, HU X G, GUO R, et al. Comparison between CNMC and hatch filter & its precision analysis for BDS precise relative positioning[J]. Scientia Sinica Physica, Mechanica & Astraunomics, 2015, 45(7): 48-56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201507008.htm [18] YANG Y, YANG Y, HU X, et al. Inter-satellite link enhanced orbit determination for BeiDou-3[J]. Journal of Navigation, 2019, 13(1): 115-130. http://www.researchgate.net/publication/333757358_Inter-Satellite_Link_Enhanced_Orbit_Determination_for_BeiDou-3 [19] TANG C, HU X, ZHOU S, et al. Improvement of orbit determination accuracy for Beidou navigation satellite system with two-way satellite time frequency transfer[J]. Advances in Space Research, 2016, 58(7): 1390-1400. doi: 10.1016/j.asr.2016.06.007 [20] 曹月玲. BeiDou区域导航系统广域差分及完好性监测研究[D]. 上海: 中国科学院上海天文台, 2014: 47-49.CAO Y L. Studies on the wide-area differential correction and integrity monitoring for the regional satellite navigation system of BeiDou[D]. Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2014: 47-49(in Chinese).