Load measurement based on structure partition and strain bridge decoupling for telescopic main landing gear
-
摘要:
为解决应变法测量支柱式主起落架载荷中的低灵敏度、高耦合度和强非线性等问题,提出了结构分区解耦和应变电桥解耦设计方法。在集中传力的轮轴和活塞杆上优选出不同等效分量载荷作用下的结构变形有效部位,并在对应部位优化布置了弯矩-剪力-扭矩应变电桥阵列,通过某型飞机起落架综合加载校准,得到了简洁可靠的支柱式主起落架载荷测量模型。载荷校准试验表明:轮轴上剪力电桥对垂向载荷的响应灵敏度相比支柱上拉压电桥对垂向载荷的响应灵敏度提高约60%,并与压缩行程变化无关。在该型机着陆试验中,利用所提载荷测量模型和飞行数据计算得到了满足工程精度要求的主起落架着陆载荷和缓冲器功量吸收结果。
Abstract:In order to resolve the problems of low sensitivity, high coupling degree and prominent nonlinearity during the load measurement of telescopic landing gear by strain method, the decoupling design methods of structure partition and strain bridge are proposed. Trough optimization design the effective parts of structure deformation under different equivalent load components were selected on the wheel-axis and piston rod with concentrated force transfer, and the bending moument-shear-torque strain bridge array was installed in the corresponding position.Furthermore, a simple and reliable load measurement model was obtained by combined loading calibration of landing gear.The load calibration tests show that the response sensitivity of the shear bridge on the wheel-axis to the vertical load is about 60% higher than that of the tension-compression bridge on the strut, and has no relation with the change of the compression stroke.Finally in the landing tests the load measurement model and flight data were used to calculate the landing load and buffer power absorption results which satisfy the requirments of engineering accuracy.
-
-
[1] SKOPINSKI T H, AIKEN W S, HUSTON W B.Calibration of strain-gage installations in aircraft structures for the measurement of flight loads[R].Washington, D.C.: NACA Report 1178, 1953: 1-35. [2] WATTERS K C, ATCLIFFE P.Calibration of mirage main undercarriage to determine wheel loads from measured strains: ADA086721[R].[S.l.]: NTIS, 1979: 1-15. [3] 吴伟, 张书明, 腾启, 等. 起落架载荷测量与标定试验研究[J]. 机械强度, 2003, 25(1): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301012.htmWU W, ZHANG S M, TENG Q, et al. Study on load measurement and calibration test for airplane landing gear[J]. Journal of Mechanical Strength, 2003, 25(1): 48-51(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301012.htm [4] 克利亚奇科M T, 阿尔纳乌托夫E B. 飞机强度飞行试验——静载荷[M]. 汤吉晨, 译. 西安: [s. n. ], 1992: 1-31.KLIQKO M T, APHAYTOB E B.Aircraft strength flight test-Static load[M].TANG J C, translated.Xi'an: [s.n.], 1992: 1-31(in Chinese). [5] 顾兴若, 沈鸿桥, 蒋进荣, 等. 风洞应变天平规范: GJB 2244-1994[S]. 北京: 国防科学技术工业委员会, 1994: 3-10.GU X R, SHEN H Q, JIANG J R, et al.Specification for wind tunnel strain gage balance: GJB 2244-1994[S].Beijing: Commission of Science, Technology and Industry for National Defense, 1994: 3-10(in Chinese). [6] 飞机设计手册总编委会. 飞机设计手册: 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002: 271-280.The Chief Committee of Aircraft Design Manual. Aircraft design manual: Takeoff and landing system[M]. Beijing: Aviation Industry Press, 2002: 271-280(in Chinese). [7] 国防科学技术工业委员会. 军用飞机结构强度规范. 第4部分: 地面载荷: GJB 67.4A-2008[S]. 北京: 国防科学技术国防科学技术工业委员会军标出版发行部, 2008: 1-10.The Committee of National Defense Science Technology and Industry.Military airplane structural strength specification.Part 4: Ground loads: GJB 67.4A-2008[S].Beijing: Department of Military Standard Press, The Commission of National Defense Science Technolgy and Industry, 2008: 1-10(in Chinese). [8] RICHARD D L, IWAN P.Stepwise regression analysis of MDOE balance calibration data acquired at DNW: AIAA 2007-144[R].Reston: AIAA, 2007. [9] ZHAO Y, LI Z R, JIANG Q D.An improved genetic algorithm for landing gear load measurement by eliminating redundancy[C]//International Conference on Experimental and Applied Mechanics, 2014: 1-6. [10] 王记, 许景铭, 金兆丰, 等. 军用飞机强度和刚度规范飞行试验: GJB 67.10-1985[S]. 北京: 国防科学技术工业委员会, 1985: 10-15.WANG J, XU J M, JIN Z F, et al.Military airplane strength and rigidity specification flight test: GJB 67.10-1985[S].Beijing: Commission of Science, Technology and Industry for National Defense, 1985: 10-15(in Chinese). [11] 国防科学技术工业委员会. 军用飞机结构强度规范. 第10部分: 飞行试验: GJB 67.10A-2008[S]. 北京: 国防科学技术国防科学技术工业委员会军标出版发行部, 2008: 3-10.The Committee of National Defense Science Technology and Industry.Military airplane structural strength specification.Part 10: Flight tests: GJB 67.10A-2008[S].Beijing: Department of Military Standard Press, The Commission of National Defense Science Technolgy and Industry, 2008: 3-10(in Chinese). [12] 国防科学技术工业委员会. 军用飞机验证要求: GJB 1015A-2008[S]. 北京: 国防科学技术工业委员会军标出版发行部, 2008: 8-15.The Committee of National Defense Science Technology and Industry.Military airplane demonstration requirements: GJB 1015A-2008[S].Beijing: Department of Military Standard Press, The Commission of National Defense Sicence Technology and Industry, 2008: 8-15(in Chinese). [13] 蒋启登. 陆基飞机大下沉速度对称着陆试验方法[J]. 北京航空航天大学学报, 2013, 39(11): 1421-1425. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I11/1421JIANG Q D. Flight test of high sink speed symmetric landing used in land-based aircraft strength verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(11): 1421-1425(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I11/1421 [14] ROBERT K H.Closed loop analysis of manual flare and landing: AIAA 74-834[R].Reston: AIAA, 1974. [15] MORI R, SUZUKI S.Opimization of neural network modeling for human landing control analysis: AIAA-2007-2843[R].Reston: AIAA, 2007.