-
摘要:
功率变换器是开关磁阻电机(SRM)调速系统的核心部件之一,也是系统可靠性最弱的环节。针对传统功率变换器短路故障诊断需增加额外硬件、控制器负担大、诊断范围有限等问题,以非对称半桥式功率变换器为研究对象,在深入分析短路故障模式的基础上,为提取明显的故障特征,对电流传感器进行了重新排布,提出了基于特定转子位置区间内电流的功率变换器故障诊断方法。在某相单独励磁区间内,通过另外两相电流传感器输出值之差与前一相输出值的比值,即可快速定位故障器件。所提方法不受电机相数和控制方式限制,控制器负担小,且无需增加额外硬件。仿真和实验验证了方法的有效性。
-
关键词:
- 开关磁阻电机(SRM) /
- 功率变换器 /
- 故障诊断 /
- 电流传感器 /
- 电流分析
Abstract:The power converter is one of the core components of the Switched Reluctance Motor (SRM) speed control system, and it is also the weakest link of system reliability. Aimed at the problems of traditional power converter short-circuit fault diagnosis methods, such as additional hardware, large controller burden, limited diagnosis range, etc., taking the asymmetric half-bridge power converter as the research object, based on the theoretical analysis of the failure modes, the current sensors are rearranged to extract obvious fault feature, and a fault diagnosis method for power converters based on current analysis within a specific rotor position interval is proposed. In the single excitation interval of the current phase, the ratio of the difference between the output values of the other two phases current sensors and the output value of the previous phase can be used to quickly locate the faulty device. This method is not limited by the number of motor phases and control methods, the controller burden is small, and no additional hardware is required. Simulations and experiments verify the effectiveness of this method.
-
Key words:
- Switched Reluctance Motor (SRM) /
- power converter /
- fault diagnosis /
- current sensor /
- current analysis
-
表 1 电机正常运行时单独励磁区间内电流关系
Table 1. Current relation in separate excitation interval during normal motor operation
i AI BI CI ib 0 1 2(iLB-iLC) 1 2(iLB-iLA) ic 1 2(iLC-iLB) 0 1 2(iLC-iLA) ia 1 2(iLA-iLB) 1 2(iLA-iLC) 0 -
[1] CHEN H, GU J J. Implementation of the three-phase switched reluctance machine system for motors and generators[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(3): 421-432. doi: 10.1109/TMECH.2009.2027901 [2] UDDIN W, HUSAIN T, SOZER Y, et al. Design methodology of a switched reluctance machine for off-road vehicle applications[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2138-2147. doi: 10.1109/TIA.2015.2514283 [3] GAN C, SUN Q G, WU J H, et al. A universal two-sensor current detection scheme for current control of multiphase switched reluctance motor switch multiphase excitation[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1526-1539. doi: 10.1109/TPEL.2018.2830308 [4] CHANG H, LIAW C. An integrated driving/charging switched reluctance motor drive using three-phase power module[J]. IEEE Transactions on Industrial Electronics, 2011, 58(5): 1763-1775. doi: 10.1109/TIE.2010.2051938 [5] SUN X, SHEN Y, WANG S, et al. Core losses analysis of a novel 16/10 segmented rotor switched reluctance BSG motor for HEVs using nonlinear lumped parameter equivalent circuit model[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 747-757. doi: 10.1109/TMECH.2018.2803148 [6] SONG S, FANG G. Unsaturated-inductance-based instantaneous torque online estimation of switched reluctance machine with locally linearized energy conversion loop[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6109-6119. doi: 10.1109/TIE.2017.2787570 [7] CHIBA A, KIYOTA K, HOSHI N, et al. Development of a rare-earth-free SR motor with high torque density for hybrid vehicles[J]. IEEE Transactions on Energy Conversion, 2015, 30(1): 175-182. doi: 10.1109/TEC.2014.2343962 [8] FANG J, LI W, LI H, et al. Online inverter fault diagnosis of buck-converter BLDC motor combinations[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2674-2688. doi: 10.1109/TPEL.2014.2330420 [9] FAIZ J, OJAGHI M. Stator inductance fluctuation of induction motor as an eccentricity fault index[J]. IEEE Transactions on Magnetics, 2011, 47(6): 1775-1785. doi: 10.1109/TMAG.2011.2107562 [10] GAN C, CHEN Y, QU R H, et al. An overview of fault-diagnosis and fault-tolerance techniques for switched reluctance machine systems[J]. IEEE Access, 2019, 7: 174822-174838. doi: 10.1109/ACCESS.2019.2956552 [11] GAN C, SUN Q G, WU J H, et al. MMC-based SRM drives with decentralized battery energy storage system for hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(3): 2608-2621. doi: 10.1109/TPEL.2018.2846622 [12] CHEN H, LU S L. Fault diagnosis digital method for power transistors in power converters of switched reluctance motors[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 749-763. doi: 10.1109/TIE.2012.2207661 [13] GAN C, WU J H, YANG S Y, et al. Fault diagnosis scheme for open-circuit faults in switched reluctance motor drives using fast Fourier transform algorithm with bus current detection[J]. IET Power Electronics, 2016, 9(1): 20-30. doi: 10.1049/iet-pel.2014.0945 [14] 甘醇, 吴建华, 杨仕友. 基于小波包能量分析的开关磁阻电机功率变换器故障诊断[J]. 中国电机工程学报, 2014, 34(9): 1415-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201409012.htmGAN C, WU J H, YANG S Y. Fault diagnosis of power converters for switched reluctance motors based on wavelet packet energy analysis[J]. Proceedings of the CSEE, 2014, 34(9): 1415-1422(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201409012.htm [15] RO H, KIM D, JEONG H, et al. Tolerant control for power transistor faults in switched reluctance motor drives[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 3187-3197. doi: 10.1109/TIA.2015.2411662 [16] MARQUES J F, ESTIMA I O, GAMEIRO N S, et al. A new diagnostic technique for real-time diagnosis of power converter faults in switched reluctance motor drives[J]. IEEE Transactions on Industry Applications, 2014, 50(3): 1854-1860. doi: 10.1109/TIA.2013.2279898 [17] PEI X J, NIE S S, CHEN Y, et al. Open-circuit fault diagnosis and fault-tolerant strategies for full-bridge DC-DC converters[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2550-2565. doi: 10.1109/TPEL.2011.2173589 [18] SHIN H U, LEE K B. Fault diagnosis method for power transistors in switched reluctance machine drive system[C]//IEEE 8th International Power Electronics and Motion Control Conference. Piscataway: IEEE Press, 2016: 2481-2486. [19] CHEN H, HAN G Q, SHI X Q, et al. Phase current digital analysis of power converter for freewheeling diode fault diagnosis on switched reluctance motor drive[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6613-6624. doi: 10.1109/TIE.2018.2889628 [20] CHEN H, HAN G Q, GUAN G R. Generalised fault diagnostic method for power transistors in asymmetric half-bridge power converter of SRM drive[J]. IET Electric Power Applications, 2019, 13(2): 168-180. doi: 10.1049/iet-epa.2018.5375 [21] PENG W, GYSELINCK J J C, AHN J, et al. Minimal current sensing strategy for switched reluctance machine control with enhanced fault-detection capability[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3725-3735. doi: 10.1109/TIA.2019.2904433 [22] HAN G Q, CHEN H, SHI X Q, et al. Phase current reconstruction strategy for switched reluctance machines with fault-tolerant capability[J]. IET Electric Power Applications, 2017, 11(3): 399-411. doi: 10.1049/iet-epa.2016.0567