留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NACA0030的波纹状翼型气动特性探索

张庆 叶正寅

张庆, 叶正寅. 基于NACA0030的波纹状翼型气动特性探索[J]. 北京航空航天大学学报, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135
引用本文: 张庆, 叶正寅. 基于NACA0030的波纹状翼型气动特性探索[J]. 北京航空航天大学学报, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135
ZHANG Qing, YE Zhengyin. Aerodynamic exploration for wavy airfoil based on NACA0030[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135(in Chinese)
Citation: ZHANG Qing, YE Zhengyin. Aerodynamic exploration for wavy airfoil based on NACA0030[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1138-1144. doi: 10.13700/j.bh.1001-5965.2020.0135(in Chinese)

基于NACA0030的波纹状翼型气动特性探索

doi: 10.13700/j.bh.1001-5965.2020.0135
基金项目: 

国家“863”计划 2014AA7060201

国家自然科学基金 11732013

陕西省自然科学基础研究计划 2019JM-290

详细信息
    通讯作者:

    叶正寅. E-mail: yezy@nwpu.edu.cn

  • 中图分类号: V211.41+2

Aerodynamic exploration for wavy airfoil based on NACA0030

Funds: 

National High-tech Research and Development Program of China 2014AA7060201

National Natural Science Foundation of China 11732013

Natural Science Basic Research Program of Shaanxi 2019JM-290

More Information
  • 摘要:

    相对于光滑翼型,波纹状翼型的气动特性呈现出一些独特现象。为了深入探索这种布局的气动特点,在前期风洞试验的基础上,以NACA0030翼型为基础,设计了一组具有不同外形特征的波纹状翼型,开展了非定常数值模拟工作,详细研究了低雷诺数(Re=12×104)流动情况下波纹状外形对流场涡流结构和总体气动特性的影响规律。计算结果表明:相对于光滑翼型,波纹状翼型流动的分离流现象更明显,升力和升力线斜率有明显下降,但推迟了失速现象。波纹状翼型表面越光顺,气动特性越接近于光滑翼型。虽然波纹状翼型的压差阻力大于光滑翼型,但是波纹状外形产生的回流可以减小摩擦阻力。

     

  • 图 1  基于NACA0030翼型的波纹状翼型

    Figure 1.  Wavy airfoil based on NACA0030

    图 2  不同位置的计算网格分布

    Figure 2.  Computational grid distribution at different positions

    图 3  NACA0030翼型的压力系数对比

    Figure 3.  Comparison of pressure coefficient for NACA0030 airfoil

    图 4  不同翼型的气动特性对比

    Figure 4.  Comparison of aerodynamic characteristics among different airfoils

    图 5  不同迎角下翼型表面的压力系数分布对比

    Figure 5.  Comparison of airfoil surface pressure coefficient distribution at different angles of attack

    图 6  不同迎角下压力场及流线对比

    Figure 6.  Comparison of pressure field and streamlines at different angles of attack

  • [1] 谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7): 833-838. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833

    XIE C C, WANG W J, YANG C. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 833-838(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833
    [2] 华如豪, 叶正寅. 排式充气机翼的高效气动布局研究[J]. 空气动力学学报, 2012, 30(2): 184-191. doi: 10.3969/j.issn.0258-1825.2012.02.008

    HUA R H, YE Z Y. Research on effective aerodynamic configuration of row inflatable wings[J]. Acta Aerodynamica Sinica, 2012, 30(2): 184-191(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.02.008
    [3] 张庆, 叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学, 2014, 31(12): 234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564

    ZHANG Q, YE Z Y. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mechanics, 2014, 31(12): 234-240(in Chinese). doi: 10.6052/j.issn.1000-4750.2013.06.0564
    [4] 王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10): 2296-2301. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htm

    WANG W, WANG H, JIA Q P. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10): 2296-2301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htm
    [5] 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890. doi: 10.3873/j.issn.1000-1328.2013.07.001

    WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable reentry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.07.001
    [6] 张庆, 叶正寅. 一种新型可控方向的再入充气罩[J]. 应用力学学报, 2013, 30(4): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htm

    ZHANG Q, YE Z Y. A new controllable inflatable shield for reentry[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 504-509(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htm
    [7] 李爽, 江秀强. 火星进入减速器技术综述与展望[J]. 航空学报, 2015, 36(2): 422-440. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htm

    LI S, JIANG X Q. Review and prospect of decelerator technologies for mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 422-440(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htm
    [8] LI S, JIANG X. Review and prospect of guidance and control for mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57. doi: 10.1016/j.paerosci.2014.04.001
    [9] 张庆, 叶正寅. 排式双翼布局低雷诺数气动特性计算研究[J]. 工程力学, 2019, 36(10): 244-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htm

    ZHANG Q, YE Z Y. Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly-tandem wing configurations[J]. Engineering Mechanics, 2019, 36(10): 244-256(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htm
    [10] 张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析[J]. 北京航空航天大学学报, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188

    ZHANG Q, YE Z Y. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 77-85(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0188
    [11] 吕强, 叶正寅, 李栋. 充气结构机翼的设计和试验研究[J]. 飞行力学, 2007, 25(4): 77-80. doi: 10.3969/j.issn.1002-0853.2007.04.021

    LV Q, YE Z Y, LI D. Design and capability analysis of an aircraft with inflatable wing[J]. Flight Dynamics, 2007, 25(4): 77-80(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.021
    [12] HU H, TAMAI M. Bioinspired corrugated airfoil at low Reynolds numbers[J]. Journal of Aircraft, 2008, 45(6): 2068-2077. doi: 10.2514/1.37173
    [13] MURPHY J T, HU H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010, 49(2): 531-546. doi: 10.1007/s00348-010-0826-z
    [14] YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573
    [15] HORD K, LIANG Y. Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil[J]. Journal of Aircraft, 2012, 49(3): 749-757. doi: 10.2514/1.C031135
    [16] FLINT T J, JERMY M C, NEW T H, et al. Computational study of a pitching bio-inspired corrugated airfoil[J]. International Journal of Heat and Fluid Flow, 2017, 65: 328-341. doi: 10.1016/j.ijheatfluidflow.2016.12.009
    [17] TANG H, LEI Y, LI X, et al. Numerical investigation of the aerodynamic characteristics and attitude stability of a bio-inspired corrugated airfoil for MAV or UAV applications[J]. Energies, 2019, 12(20): 4021. doi: 10.3390/en12204021
    [18] BARNES C J, VISBAL M R. Numerical exploration of the origin of aerodynamic enhancements in low-Reynolds number corrugated airfoils[J]. Physics of Fluids, 2013, 25(11): 115106. doi: 10.1063/1.4832655
    [19] HO W H, NEW T H. Unsteady numerical investigation of two different corrugated airfoils[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2423-2437. doi: 10.1177/0954410016682539
    [20] SHI X, HUANG X, ZHENG Y, et al. Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(3/4): 1092-1120. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9fb28e484051e2b447ddc8f459d7d5ea
  • 加载中
图(6)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  61
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 录用日期:  2020-05-15
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答