-
摘要:
相对于光滑翼型,波纹状翼型的气动特性呈现出一些独特现象。为了深入探索这种布局的气动特点,在前期风洞试验的基础上,以NACA0030翼型为基础,设计了一组具有不同外形特征的波纹状翼型,开展了非定常数值模拟工作,详细研究了低雷诺数(
Re =12×104)流动情况下波纹状外形对流场涡流结构和总体气动特性的影响规律。计算结果表明:相对于光滑翼型,波纹状翼型流动的分离流现象更明显,升力和升力线斜率有明显下降,但推迟了失速现象。波纹状翼型表面越光顺,气动特性越接近于光滑翼型。虽然波纹状翼型的压差阻力大于光滑翼型,但是波纹状外形产生的回流可以减小摩擦阻力。Abstract:Compared with smooth airfoil, the aerodynamic characteristics of wavy airfoil exhibit some unique features. In order to further explore the aerodynamic characteristics of the wavy configuration, based on the previous wind tunnel tests, a group of wavy airfoils with different geometric shape modified from NACA0030 were designed and then unsteady numerical simulations were carried out in details to investigate the effect of waviness on the vortical structure in the flow field and overall aerodynamic characteristics in low Reynolds number (
Re =12×104) region. Final results show that, compared to the smooth airfoil, the separation flow for the wavy airfoil is more obvious, and the lift and its slope decrease significantly, but the stalling is delayed. The smoother the wavy surface is, the closer the aerodynamic characteristics are to the smooth airfoil. Although the pressure drag of the wavy wing is greater than that of the smooth airfoil, the recirculation generated in the corrugation can reduce the viscous drag. -
-
[1] 谢长川, 王伟建, 杨超. 充气式机翼的颤振特性分析[J]. 北京航空航天大学学报, 2011, 37(7): 833-838. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833XIE C C, WANG W J, YANG C. Flutter analysis of inflatable wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 833-838(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I7/833 [2] 华如豪, 叶正寅. 排式充气机翼的高效气动布局研究[J]. 空气动力学学报, 2012, 30(2): 184-191. doi: 10.3969/j.issn.0258-1825.2012.02.008HUA R H, YE Z Y. Research on effective aerodynamic configuration of row inflatable wings[J]. Acta Aerodynamica Sinica, 2012, 30(2): 184-191(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.02.008 [3] 张庆, 叶正寅. 一种基于充气气囊的垂尾抖振抑制新方法研究[J]. 工程力学, 2014, 31(12): 234-240. doi: 10.6052/j.issn.1000-4750.2013.06.0564ZHANG Q, YE Z Y. Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J]. Engineering Mechanics, 2014, 31(12): 234-240(in Chinese). doi: 10.6052/j.issn.1000-4750.2013.06.0564 [4] 王伟, 王华, 贾清萍. 充气机翼承载能力和气动特性分析[J]. 航空动力学报, 2010, 25(10): 2296-2301. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htmWANG W, WANG H, JIA Q P. Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J]. Journal of Aerospace Power, 2010, 25(10): 2296-2301(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201010024.htm [5] 卫剑征, 谭惠丰, 王伟志, 等. 充气式再入减速器研究最新进展[J]. 宇航学报, 2013, 34(7): 881-890. doi: 10.3873/j.issn.1000-1328.2013.07.001WEI J Z, TAN H F, WANG W Z, et al. New trends in inflatable reentry aeroshell[J]. Journal of Astronautics, 2013, 34(7): 881-890(in Chinese). doi: 10.3873/j.issn.1000-1328.2013.07.001 [6] 张庆, 叶正寅. 一种新型可控方向的再入充气罩[J]. 应用力学学报, 2013, 30(4): 504-509. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htmZHANG Q, YE Z Y. A new controllable inflatable shield for reentry[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 504-509(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201304008.htm [7] 李爽, 江秀强. 火星进入减速器技术综述与展望[J]. 航空学报, 2015, 36(2): 422-440. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htmLI S, JIANG X Q. Review and prospect of decelerator technologies for mars entry[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 422-440(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201502003.htm [8] LI S, JIANG X. Review and prospect of guidance and control for mars atmospheric entry[J]. Progress in Aerospace Sciences, 2014, 69: 40-57. doi: 10.1016/j.paerosci.2014.04.001 [9] 张庆, 叶正寅. 排式双翼布局低雷诺数气动特性计算研究[J]. 工程力学, 2019, 36(10): 244-256. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htmZHANG Q, YE Z Y. Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly-tandem wing configurations[J]. Engineering Mechanics, 2019, 36(10): 244-256(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201910028.htm [10] 张庆, 叶正寅. 基于气动导数的类X-37B飞行器纵向稳定性分析[J]. 北京航空航天大学学报, 2020, 46(1): 77-85. doi: 10.13700/j.bh.1001-5965.2019.0188ZHANG Q, YE Z Y. Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 77-85(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0188 [11] 吕强, 叶正寅, 李栋. 充气结构机翼的设计和试验研究[J]. 飞行力学, 2007, 25(4): 77-80. doi: 10.3969/j.issn.1002-0853.2007.04.021LV Q, YE Z Y, LI D. Design and capability analysis of an aircraft with inflatable wing[J]. Flight Dynamics, 2007, 25(4): 77-80(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.021 [12] HU H, TAMAI M. Bioinspired corrugated airfoil at low Reynolds numbers[J]. Journal of Aircraft, 2008, 45(6): 2068-2077. doi: 10.2514/1.37173 [13] MURPHY J T, HU H. An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J]. Experiments in Fluids, 2010, 49(2): 531-546. doi: 10.1007/s00348-010-0826-z [14] YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573 [15] HORD K, LIANG Y. Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil[J]. Journal of Aircraft, 2012, 49(3): 749-757. doi: 10.2514/1.C031135 [16] FLINT T J, JERMY M C, NEW T H, et al. Computational study of a pitching bio-inspired corrugated airfoil[J]. International Journal of Heat and Fluid Flow, 2017, 65: 328-341. doi: 10.1016/j.ijheatfluidflow.2016.12.009 [17] TANG H, LEI Y, LI X, et al. Numerical investigation of the aerodynamic characteristics and attitude stability of a bio-inspired corrugated airfoil for MAV or UAV applications[J]. Energies, 2019, 12(20): 4021. doi: 10.3390/en12204021 [18] BARNES C J, VISBAL M R. Numerical exploration of the origin of aerodynamic enhancements in low-Reynolds number corrugated airfoils[J]. Physics of Fluids, 2013, 25(11): 115106. doi: 10.1063/1.4832655 [19] HO W H, NEW T H. Unsteady numerical investigation of two different corrugated airfoils[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 231(13): 2423-2437. doi: 10.1177/0954410016682539 [20] SHI X, HUANG X, ZHENG Y, et al. Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(3/4): 1092-1120. http://smartsearch.nstl.gov.cn/paper_detail.html?id=9fb28e484051e2b447ddc8f459d7d5ea