留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系留无人机平台搭载的蜂窝通信基站吞吐量优化

罗祎喆 丁文锐 雷耀麟 刘春辉

罗祎喆, 丁文锐, 雷耀麟, 等 . 系留无人机平台搭载的蜂窝通信基站吞吐量优化[J]. 北京航空航天大学学报, 2021, 47(6): 1161-1172. doi: 10.13700/j.bh.1001-5965.2020.0136
引用本文: 罗祎喆, 丁文锐, 雷耀麟, 等 . 系留无人机平台搭载的蜂窝通信基站吞吐量优化[J]. 北京航空航天大学学报, 2021, 47(6): 1161-1172. doi: 10.13700/j.bh.1001-5965.2020.0136
LUO Yizhe, DING Wenrui, LEI Yaolin, et al. Throughput optimization for cellular communication on tethered unmanned aerial vehicle base station[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1161-1172. doi: 10.13700/j.bh.1001-5965.2020.0136(in Chinese)
Citation: LUO Yizhe, DING Wenrui, LEI Yaolin, et al. Throughput optimization for cellular communication on tethered unmanned aerial vehicle base station[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1161-1172. doi: 10.13700/j.bh.1001-5965.2020.0136(in Chinese)

系留无人机平台搭载的蜂窝通信基站吞吐量优化

doi: 10.13700/j.bh.1001-5965.2020.0136
基金项目: 

国防科技工业发展规划 JCKY2017601C006

国家重点研发计划 2016YFB0502602

详细信息
    通讯作者:

    丁文锐, E-mail: ding@buaa.edu.cn

  • 中图分类号: V279+.2;TB553

Throughput optimization for cellular communication on tethered unmanned aerial vehicle base station

Funds: 

Defense Industrial Technology Development Program JCKY2017601C006

ional Key R · D Program of China 2016YFB0502602

More Information
  • 摘要:

    考虑多架系留无人机(UAV)空中基站为多小区提供空地双向通信服务时,针对地面用户数目分布不均匀和多机协同服务同频干扰严重的问题,提出了一种联合优化空中基站高度和链路传输方向的吞吐量优化算法。该方法通过使用最大同频链路准则和就近服务准则确定了同频链路配对和无人机/用户配对,通过优化空中基站高度和链路传输方向提升了系统平均吞吐量,并减少了用户间的同频干扰。多种场景下验证结果均显示,所提方法显著优于其他非联合优化的对比方法,当拥塞小区用户数目是非拥塞小区用户数目的1~36倍时,相比于不联合优化链路传输方向和空中基站高度的对比方法,所提方法可提升系统平均吞吐量8倍左右。

     

  • 图 1  小区地面用户分布不均衡场景的空地通信

    Figure 1.  Air-ground communication in the scenario of uneven distribution of ground users in community

    图 2  小区地面用户分布均衡场景的空地通信

    Figure 2.  Air-ground communication in the scenario of average distribution of ground users in community

    图 3  同频链路服务

    Figure 3.  Co-channel service

    图 4  单独链路服务

    Figure 4.  Individual channel service

    图 5  吞吐量优化方法仿真验证场景

    Figure 5.  Simulation and verification scenario for throughput optimization method

    图 6  使用所提吞吐量优化方法的第1次服务

    Figure 6.  First service using proposed throughput optimization method

    图 7  使用所提吞吐量优化方法的第2次服务

    Figure 7.  Second service using proposed throughput optimization method

    图 8  不同拥塞小区用户数目下系统平均吞吐量比较

    Figure 8.  Comparison of system average throughput under different ground user numbers of congested communities

    图 9  不同空中基站最低高度情况下系统平均吞吐量比较

    Figure 9.  Comparison of average throughput at different UAV minimum altitudes

    图 10  不同非直视链路阴影衰落均值情况下系统平均吞吐量比较

    Figure 10.  Comparison of average throughput under different non-direct-looking shadow fading averages

    表  1  多机场景吞吐量优化方法验证的参数设置

    Table  1.   Parameter setting for throughput optimization method verification in multi-UAV scenarios

    参数 取值
    地面用户最大发射功率Pgmax/(dB·m) 20
    空中基站最大发射功率Pumax/(dB·m) 30
    定向天线半波数宽度ΦB π/3
    单位天线增益g0 2.286 4 [18]
    载频fc/GHz 2
    路损指数n 2.5
    空中基站最大高度Hmax/m 400
    空中基站最小高度Hmin/m 50
    空地信道参数α 0.6[15]
    空地信道参数γ 0.11[15]
    噪声功率σNLoS2/(dB·m) -120
    噪声功率σLoS2/(dB·m) -120
    直视链路阴影衰落均值ψLoS/dB 2[15-16]
    非直视链路阴影衰落均值ψNLoS/dB 20[15-16]
    下载: 导出CSV

    表  2  不同方法的吞吐量比较

    Table  2.   Throughput comparison of different methods

    拥塞小区用户数 本文方法 对比方法 吐吞量提升/倍
    1 49.5 6 8.25
    6 21.9 2.7 8.1
    11 16.15 1.8 9.0
    16 12.15 1.4 8.7
    21 9.8 1.1 8.9
    26 8.5 0.9 9.4
    31 7.6 0.9 8.4
    36 7.1 0.8 8.9
    下载: 导出CSV
  • [1] MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys and Tutorials, 2019, 21(3): 2334-2360. doi: 10.1109/COMST.2019.2902862
    [2] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. doi: 10.1109/MCOM.2016.7470933
    [3] SELECKY M, FAIGL J, ROLLO M. Communication architecture in mixed-reality simulations of unmanned systems[J]. Sensors, 2018, 18(3): 853. doi: 10.3390/s18030853
    [4] HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint[J]. IEEE Communications Surveys and Tutorials, 2016, 18(4): 2624-2661. doi: 10.1109/COMST.2016.2560343
    [5] KHAMSEH H B, JANABI-SHARIFI F, ABDESSAMEUD A. Aerial manipulation-A literature survey[J]. Robotics and Autonomous Systems, 2018, 107: 221-235. doi: 10.1016/j.robot.2018.06.012
    [6] PRIEST L, TERRY C, ERICKSON R. Tethered unmanned aerial vehicle-based systems and methods associated with cell sites and cell towers: USA, 9669945[P]. 2017-06-06.
    [7] SUDHSEEH P G, MOZAFARRI M, MAGARINI M, et al. Sum-rate analysis for high altitude platform (HAP) drones with tethered balloon relay[J]. IEEE Communications Letters, 2018, 22(6): 1240-1243. doi: 10.1109/LCOMM.2017.2785847
    [8] BUSHNAQ O M, KISHK M A, CELIK A, et al. Cellular traffic offloading through tethered-UAV deployment and user association[EB/OL]. (2020-03-02)[2020-03-28]. https://arxiv.org/abs/2003.00713v1.
    [9] KISHK M A, BADER A, ALOUINI M S. Capacity and coverage enhancement using long-endurance tethered airborne base stations[EB/OL]. (2019-06-27)[2020-03-28]. https://arxiv.org/pdf/1906.11559.pdf.
    [10] 李威, 李跃军. 利用无人机搭建高空基站的研究[J]. 通讯世界, 2017, 9: 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TXSJ201709007.htm

    LI W, LI Y J. The research on building high-altitude communication base station by using UAV[J]. Telecom World, 2017, 9: 12-13(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TXSJ201709007.htm
    [11] 吴侹. 系留多旋翼无人机通信系统在应急救灾通信中的应用[J]. 移动通信, 2016, 40(15): 68-71. doi: 10.3969/j.issn.1006-1010.2016.15.013

    WU T. The application of captive multi-rotor UAV telecommunication system in emergency rescue communication[J]. Mobile Communication, 2016, 40(15): 68-71(in Chinese). doi: 10.3969/j.issn.1006-1010.2016.15.013
    [12] 徐秀杰, 贾荣光, 杨玉永, 等. 系留式无人机中继通信系统在地震应急现场的应用试验研究[J]. 震灾防御技术, 2018, 13(3): 718-726. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803023.htm

    XU X J, JIA R G, YANG Y Y, et al. Technical application of the tethered UAV relay system in earthquake emergency site[J]. Technology for Earthguake Disater Prevention, 2018, 13(3): 718-726(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201803023.htm
    [13] HUANG W, KIM D M, DING W, et al. Joint configuration of transmission direction and altitude in uav-based two-way communication[EB/OL]. [2020-03-28]. https://arxiv.org/pdf/1805.08635.pdf, 2018.
    [14] HUANG W, KIM D M, DING W, et al. Joint optimization of altitude and transmission direction in UAV-based two-way communication[J]. IEEE Wireless Communications Letters, 2019, 8(4): 984-987. doi: 10.1109/LWC.2019.2903041
    [15] AL-HOURANI A, KANDEEPAN S, JAMALIPOUR A. Modeling air-to-ground path loss for low altitude platforms in urban environments[C]//Proceedings of IEEE Global Communications Conference. Piscataway: IEEE Press, 2014: 2898-2904.
    [16] MOZAFARRI M, SAAD W, BENNIS M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage[J]. IEEE Communications Letters, 2016, 20(8): 1647-1650. doi: 10.1109/LCOMM.2016.2578312
    [17] POPOVSKI P, SIMEONE O, NIELSEN J J, et al. Interference spins: Scheduling of multiple interfering two-way wireless links[J]. IEEE Communications Letters, 2015, 19(3): 387-390. doi: 10.1109/LCOMM.2014.2387166
    [18] HE H, ZHANG S, ZENG Y, et al. Joint altitude and beamwidth optimization for UAV-enabled multiuser communications[J]. IEEE Communications Letters, 2018, 22(2): 344-347. doi: 10.1109/LCOMM.2017.2772254
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  119
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 录用日期:  2020-07-03
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答