留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变弯度翼型动态气动特性数值模拟

吴优 戴玉婷 张仁嘉 宋晨 杨超

吴优, 戴玉婷, 张仁嘉, 等 . 连续变弯度翼型动态气动特性数值模拟[J]. 北京航空航天大学学报, 2021, 47(6): 1241-1253. doi: 10.13700/j.bh.1001-5965.2020.0141
引用本文: 吴优, 戴玉婷, 张仁嘉, 等 . 连续变弯度翼型动态气动特性数值模拟[J]. 北京航空航天大学学报, 2021, 47(6): 1241-1253. doi: 10.13700/j.bh.1001-5965.2020.0141
WU You, DAI Yuting, ZHANG Renjia, et al. Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1241-1253. doi: 10.13700/j.bh.1001-5965.2020.0141(in Chinese)
Citation: WU You, DAI Yuting, ZHANG Renjia, et al. Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1241-1253. doi: 10.13700/j.bh.1001-5965.2020.0141(in Chinese)

连续变弯度翼型动态气动特性数值模拟

doi: 10.13700/j.bh.1001-5965.2020.0141
基金项目: 

国家自然科学基金 11672018

详细信息
    通讯作者:

    戴玉婷, E-mail: yutingdai@buaa.edu.cn

  • 中图分类号: V221.3

Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil

Funds: 

National Natural Science Foundation of China 11672018

More Information
  • 摘要:

    针对翼型后缘连续变弯度运动中后缘边界精确数值模拟的问题,提出了基于二维多项式的时空曲面拟合方法,实现了对后缘边界时空位置的精确模拟。在此基础上,基于OpenFOAM发展了翼型后缘连续变弯度与大幅度俯仰运动耦合的运动边界数值模拟,并计算了翼型耦合运动的气动力,讨论了后缘线性/非线性变形对翼型大迎角动态气动特性的影响规律。结果表明:后缘运动对翼型俯仰运动的升阻特性影响显著,特别在翼型大幅度俯仰时后缘非线性变形对升阻特性改善效果比线性变形大6%~10%。同时还研究了翼型俯仰与后缘变形运动相位差对气动特性的影响。特别地,当相位差为180°时,后缘运动使动态失速时的最大升力提高50.3%,平均升力提高34.6%;当2种运动相位差为0°时,后缘运动使动态失速时的最大阻力降低39.7%,平均阻力降低30.2%,最大升阻比提高22.3%,平均升阻比提高16.8%;同时,翼型在动态俯仰过程中出现负阻力现象,对产生负阻力的原因进行了分析。这些结果可用于指导连续变弯度后缘控制律的设计。

     

  • 图 1  翼段运动的分解

    Figure 1.  Decomposition of airfoil motion

    图 2  Γ1xx的拟合结果

    Figure 2.  Fitting result of Γ1xx

    图 3  翼型俯仰运动和后缘偏转引起的网格变形

    Figure 3.  Mesh deformation caused by airfoil pitch motion and trailing edge deformation

    图 4  OpenFOAM计算结果与文献[29]实验对比

    Figure 4.  OpenFOAM calculation results compared withexperiments of ref.[29]

    图 5  翼型俯仰运动函数

    Figure 5.  Pitch motion function of airfoil

    图 6  升力系数响应

    Figure 6.  Lift coefficient response

    图 7  0°相位差时翼型周围流场速度分布及压力分布

    Figure 7.  Velocity and pressure distribution of flow field around airfoil at 0° phase difference

    图 8  180°相位差时翼型周围流场速度分布及压力分布

    Figure 8.  Velocity and pressure distribution of flow field around airfoil at 180° phase difference

    图 9  阻力系数响应

    Figure 9.  Drag coefficient response

    图 10  不同迎角下连续变弯度翼型峰值气动力系数随相位变化与无偏转翼型对比

    Figure 10.  Peak aerodynamic coefficient variation with phase for camber morphing airfoil compared with baseline airfoil at different angle of attack

    图 11  不同迎角下连续变弯度翼型平均气动力系数随相位变化与无偏转翼型对比

    Figure 11.  Time-averaged aerodynamic coefficient variation with phase for camber morphing airfoil compared with baselie airfoil at different angle of attack

    图 12  连续变弯度翼型负阻力随相位变化与无偏转翼型对比

    Figure 12.  Negative drag variation with phase for camber morphing airfoil compared with baseline airfoil

    表  1  翼型形状参数

    Table  1.   Airfoil shape parameters

    参数 数值
    弦长l/m 1
    旋转中心到前缘距离c/m 0.25
    变形起始点到前缘距离p/m 0.70
    下载: 导出CSV

    表  2  后缘中线形函数

    Table  2.   Shape function of trailing edge mean line

    工况 ϕ(x) A p
    0 0
    1 AT(t)(x-p) 0.27 0.7
    2 AT(t)(x-p)2 0.95 0.7
    下载: 导出CSV

    表  3  计算参数设置

    Table  3.   Calculation parameter setting

    参数 数值
    雷诺数Re 1.35×105
    弦长l/m 0.15
    参考速度URef/(m·s-1) 13.32
    湍流度I/% 0.05
    运动黏度ν/(kg·(m·s)-1) 1.48×10-5
    空气密度ρ/(kg·m-3) 1.225
    最大库朗数Co 0.9
    时间步长Δ t/s Adjustable
    最大时间步长Δ tmax/s 10-5
    注:Adjustble表示采用自适应步长。
    下载: 导出CSV

    表  4  0°相位差时翼型小幅度俯仰的升力特性

    Table  4.   Lift characteristics of airfoil small-amplitude pitch motion at 0° phase difference  %

    工况 ΔCL ΔCL
    0 (无后缘变形) 0 0
    1 (线性变形) -34.2 -25.8
    2 (非线性变形) -34.1 -21.6
    下载: 导出CSV

    表  5  0°相位差时翼型大幅度俯仰的升力特性

    Table  5.   Lift characteristics of airfoil large-amplitude pitch motion at 0° phase difference  %

    工况 ΔCL ΔCL
    0 (无后缘变形) 0 0
    1 (线性变形) -40.8 -32.5
    2 (非线性变形) -39.7 -30.2
    下载: 导出CSV

    表  6  180°相位差时翼型小幅度俯仰的升力特性

    Table  6.   Lift characteristics of airfoil small-amplitude pitch motion at 180° phase difference  %

    工况 ΔCL ΔCL
    0 (无后缘变形) 0 0
    1 (线性变形) +36.0 +30.3
    2 (非线性变形) +36.0 +28.1
    下载: 导出CSV

    表  7  180°相位差时翼型大幅度俯仰的升力特性

    Table  7.   Lift characteristics of airfoil large-amplitude pitch motion at 180° phase difference  %

    工况 ΔCL ΔCL
    0 (无后缘变形) 0 0
    1 (线性变形) +45.4 +28.5
    2 (非线性变形) +50.3 +34.6
    下载: 导出CSV

    表  8  0°相位差时翼型小幅度俯仰的阻力特性和升阻比

    Table  8.   Drag characteristics and lift-drag ratio of airfoil small-amplitude pitch motion at 0° phase difference  %

    工况 ΔCD ΔCD ΔCL/CD
    0 (无后缘变形) 0 0 0 0
    1 (线性变形) -30.5 -28.6 -5.3 -4.1
    2 (非线性变形) -30.5 -25.8 -5.3 -4.0
    下载: 导出CSV

    表  9  0°相位差时翼型大幅度俯仰的阻力特性和升阻比

    Table  9.   Drag characteristics and lift-drag ratio of airfoil large-amplitude pitch motion at 0° phase difference  %

    工况 ΔCD ΔCD ΔCL/CD
    0 (无后缘变形) 0 0 0 0
    1 (线性变形) -48.4 -40.5 +14.7 +12.4
    2 (非线性变形) -50.7 -40.2 +22.3 +16.8
    下载: 导出CSV

    表  10  180°相位差时翼型小幅度俯仰的阻力特性和升阻比

    Table  10.   Drag characteristics and lift-drag ratio of airfoil small amplitude pitch motion at 180°phase difference  %

    工况 ΔCD ΔCD ΔCL/CD
    0 (无后缘变形) 0 0 0 0
    1 (线性变形) +53.4 +44.3 -11.9 -9.7
    2 (非线性变形) +53.4 +44.0 -11.9 -10.4
    下载: 导出CSV

    表  11  180°相位差时翼型大幅度俯仰的阻力特性和升阻比

    Table  11.   Drag characteristics and lift-drag ratio of airfoil large-amplitude pitch motion at 180°phase difference  %

    工况 ΔCD ΔCD ΔCL/CD
    0 (无后缘变形) 0 0 0 0
    1 (线性变形) +102.2 +93.5 -28.9 -22.5
    2 (非线性变形) +96.9 +86.6 -23.7 -16.6
    下载: 导出CSV
  • [1] AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft: The need for a new design philosophy[J]. Aerospace Science and Technology, 2015, 49: 154-166. http://d.wanfangdata.com.cn/periodical/05befc9f0dc72343a83805a52110b7dd
    [2] 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201702005.htm

    XU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201702005.htm
    [3] 倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201803002.htm

    NI Y G, YANG Y. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advance in Aeronautical Science and Engineering, 2018, 9(3): 297-308(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201803002.htm
    [4] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. doi: 10.7638/kqdlxxb-2019.0030

    BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443(in Chinese). doi: 10.7638/kqdlxxb-2019.0030
    [5] 祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814004.htm

    ZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: A review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814004.htm
    [6] SPILLMAN J J. The use of variable camber to reduce drag, weight and costs of transport aircraft[J]. The Aeronautical Journal, 1992, 96(951): 1-9. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10152423&previous=true&jid=AER&volumeId=96&issueId=951
    [7] SOFLA A Y N, ELZEY D M, WADLEY H N G. An antagonistic flexural unit cell for design of shape morphing structures[C]//Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. New York: ASME, 2004: 261-269.
    [8] ELZEY D M, SOFLA A Y N, WADLEY H N G. A bio-inspired high-authority actuator for shape morphing structures[C]//The International Society for Optics and Photonics, 2003: 92-100.
    [9] ELZEY D M, SOFLA A Y N, WADLEY H N G. A shape memory-based multifunctional structural actuator panel[J]. International Journal of Solids and Structures, 2005, 42(7): 1943-1955. doi: 10.1016/j.ijsolstr.2004.05.034
    [10] STROUD H R, LEAL P B C, HARTL D J. Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section[C]//Conference on Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII. Bellingham: International Society for Optics and Photonics, 2018: 1-9.
    [11] YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573
    [12] TSUSHIMA N, YOKOZEKI T, SU W H, et al. Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures[J]. Aerospace Science and Technology, 2019, 88: 244-257. doi: 10.1016/j.ast.2019.03.025
    [13] WOODS B K S, FRISWELL M I. Structural characterization of the fish bone active camber morphing airfoil[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1-11.
    [14] WOODS B K S, BILGEN O, FRISWELL M I. Wind tunnel testing of the fish bone active camber morphing concept[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7): 772-785. doi: 10.1177/1045389X14521700
    [15] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026. doi: 10.1177/1045389X18758182
    [16] WOODS B K S, DAYYANI I, FRISWELL M I. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J]. Journal of Aircraft, 2015, 52(1): 307-319. doi: 10.2514/1.C032725
    [17] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200908006.htm

    ZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200908006.htm
    [18] 朱鹏刚, 葛文杰, 张永红, 等. 基于SIMP和GA变形柔性机翼后缘的拓扑优化[J]. 机械科学与技术, 2009, 28(11): 1468-1472. doi: 10.3321/j.issn:1003-8728.2009.11.016

    ZHU P G, GE W J, ZHANG Y H, et al. Topology optimization for shape morphing compliant trailing edge using SIMP and GA[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(11): 1468-1472(in Chinese). doi: 10.3321/j.issn:1003-8728.2009.11.016
    [19] BARBARINO S, PECORA R, LECCE L, et al. A novel SMA-based concept for airfoil structural morphing[J]. Journal of Materials Engineering and Performance, 2009, 18(5): 696-705. doi: 10.1007/s11665-009-9356-3
    [20] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200906013.htm

    YANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200906013.htm
    [21] 杨智春, 党会学, 解江. 基于动网格技术的柔性后缘自适应机翼气动特性分析[J]. 应用力学学报, 2009, 26(3): 548-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200903028.htm

    YANG Z C, DANG H X, XIE J. Aerodynamic characteristics of flexible trailing edge adaptive wing by unstructured dynamic meshes[J]. Chinese Journal of Applied Mechanics, 2009, 26(3): 548-533(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200903028.htm
    [22] 解江, 杨智春. 自适应机翼柔性翼肋的受控运动学规律研究[J]. 机械科学与技术, 2007, 26(7): 917-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200707023.htm

    XIE J, YANG Z C. Study of controlled kinematics of the flexible rib of adaptive wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(7): 917-921(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200707023.htm
    [23] 解江, 杨智春, 党会学. 柔性后缘自适应机翼气动特性和操纵反效特性的比较分析[J]. 工程力学, 2009, 26(10): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910040.htm

    XIE J, YANG Z C, DANG H X. Comparative study on aerodynamics and control reversal characteristics of adaptive wings with flexible trailing edge[J]. Engineering Mechanics, 2009, 26(10): 245-251(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910040.htm
    [24] ZHOU H, ZHU H, MAIN H H, et al. Modelling and aerodynamic prediction of fish bone active camber morphing airfoil[C]//2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Piscataway: IEEE Press, 2018: 559-565.
    [25] KUMAR D, ALI S F, AROCKIARAJAN A. Structural and aerodynamics studies on various wing configurations for morphing[J]. IFAC-Papers on Line, 2018, 51(1): 498-503. http://www.sciencedirect.com/science/article/pii/S2405896318302489
    [26] HOLZMANN T. Mathematics, numerics, derivations and OpenFOAM [M]. Loeben: Holzmann CFD, 2016: 91-112.
    [27] MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics[M]. Berlin: Springer, 2016: 734-738.
    [28] JASAK H. Dynamic mesh handling in Open FOAM[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2009: 1-10.
    [29] LEE T, GERONTAKOS P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341. http://adsabs.harvard.edu/abs/2004jfm...512..313l
    [30] 郭辉, 连淇祥. 飞行器动态下俯过程中的负阻力现象[J]. 北京航空航天大学学报, 2004, 30(7): 623-626. https://bhxb.buaa.edu.cn/CN/abstract/abstract10451.shtml

    GUO H, LIAN Q X. Negative drag phenomena of aircraft in dynamic pitching process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(7): 623-626(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract10451.shtml
  • 加载中
图(12) / 表(11)
计量
  • 文章访问数:  742
  • HTML全文浏览量:  188
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 录用日期:  2020-06-30
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答