Numerical simulation of dynamic aerodynamic characteristics of a camber morphing airfoil
-
摘要:
针对翼型后缘连续变弯度运动中后缘边界精确数值模拟的问题,提出了基于二维多项式的时空曲面拟合方法,实现了对后缘边界时空位置的精确模拟。在此基础上,基于OpenFOAM发展了翼型后缘连续变弯度与大幅度俯仰运动耦合的运动边界数值模拟,并计算了翼型耦合运动的气动力,讨论了后缘线性/非线性变形对翼型大迎角动态气动特性的影响规律。结果表明:后缘运动对翼型俯仰运动的升阻特性影响显著,特别在翼型大幅度俯仰时后缘非线性变形对升阻特性改善效果比线性变形大6%~10%。同时还研究了翼型俯仰与后缘变形运动相位差对气动特性的影响。特别地,当相位差为180°时,后缘运动使动态失速时的最大升力提高50.3%,平均升力提高34.6%;当2种运动相位差为0°时,后缘运动使动态失速时的最大阻力降低39.7%,平均阻力降低30.2%,最大升阻比提高22.3%,平均升阻比提高16.8%;同时,翼型在动态俯仰过程中出现负阻力现象,对产生负阻力的原因进行了分析。这些结果可用于指导连续变弯度后缘控制律的设计。
Abstract:In order to solve the problem of accurate numerical simulation of trailing edge morphing motion of a camber morphing airfoil, a spatiotemporal surface fitting method based on two-dimensional polynomial is proposed, which could accurately simulate the space-time position of the morphing trailing edge.On this basis, the numerical simulation method of the boundary motion caused by airfoil pitching motion and trailing edge morphing is developed in OpenFOAM, and the aerodynamic forces of the coupled motions of the airfoil are calculated. The results show that trailing edge motion has a significant influence on the lift and drag characteristics of the airfoil pitching motion, the effect of nonlinear deformation is 6%-10% greater than that of linear deformation in airfoil large-amplitude pitch motion. Meanwhile, the influence of phase difference between airfoil pitch motion and trailing edge motion on aerodynamic characteristics is discussed in this paper. In particular, when phase difference is 180 degree, trailing edge motion increases the maximum lift by 50.3% as well as the time-averaged lift by 34.6%. When phase difference is 0 degree, trailing edge motion reduces the maximum drag by 39.7% as well as the time-averaged drag by 30.2%. The maximum lift-drag ratio is increased by 22.3% and time-averaged lift-drag ratio by 16.8%. Meanwhile, during the airfoil pitching motion, negative drag coefficient is observed and the inducement is discussed. The above results provide important reference for the design of control law based on camber morphing airfoil.
-
Key words:
- camber morphing airfoil /
- dynamic stall /
- negative drag /
- OpenFOAM /
- dynamic mesh
-
表 1 翼型形状参数
Table 1. Airfoil shape parameters
参数 数值 弦长l/m 1 旋转中心到前缘距离c/m 0.25 变形起始点到前缘距离p/m 0.70 表 2 后缘中线形函数
Table 2. Shape function of trailing edge mean line
工况 ϕ(x) A p 0 0 1 AT(t)(x-p) 0.27 0.7 2 AT(t)(x-p)2 0.95 0.7 表 3 计算参数设置
Table 3. Calculation parameter setting
参数 数值 雷诺数Re 1.35×105 弦长l/m 0.15 参考速度URef/(m·s-1) 13.32 湍流度I/% 0.05 运动黏度ν/(kg·(m·s)-1) 1.48×10-5 空气密度ρ/(kg·m-3) 1.225 最大库朗数Co 0.9 时间步长Δ t/s Adjustable 最大时间步长Δ tmax/s 10-5 注:Adjustble表示采用自适应步长。 表 4 0°相位差时翼型小幅度俯仰的升力特性
Table 4. Lift characteristics of airfoil small-amplitude pitch motion at 0° phase difference
% 工况 ΔCL ΔCL 0 (无后缘变形) 0 0 1 (线性变形) -34.2 -25.8 2 (非线性变形) -34.1 -21.6 表 5 0°相位差时翼型大幅度俯仰的升力特性
Table 5. Lift characteristics of airfoil large-amplitude pitch motion at 0° phase difference
% 工况 ΔCL ΔCL 0 (无后缘变形) 0 0 1 (线性变形) -40.8 -32.5 2 (非线性变形) -39.7 -30.2 表 6 180°相位差时翼型小幅度俯仰的升力特性
Table 6. Lift characteristics of airfoil small-amplitude pitch motion at 180° phase difference
% 工况 ΔCL ΔCL 0 (无后缘变形) 0 0 1 (线性变形) +36.0 +30.3 2 (非线性变形) +36.0 +28.1 表 7 180°相位差时翼型大幅度俯仰的升力特性
Table 7. Lift characteristics of airfoil large-amplitude pitch motion at 180° phase difference
% 工况 ΔCL ΔCL 0 (无后缘变形) 0 0 1 (线性变形) +45.4 +28.5 2 (非线性变形) +50.3 +34.6 表 8 0°相位差时翼型小幅度俯仰的阻力特性和升阻比
Table 8. Drag characteristics and lift-drag ratio of airfoil small-amplitude pitch motion at 0° phase difference
% 工况 ΔCD ΔCD ΔCL/CD 0 (无后缘变形) 0 0 0 0 1 (线性变形) -30.5 -28.6 -5.3 -4.1 2 (非线性变形) -30.5 -25.8 -5.3 -4.0 表 9 0°相位差时翼型大幅度俯仰的阻力特性和升阻比
Table 9. Drag characteristics and lift-drag ratio of airfoil large-amplitude pitch motion at 0° phase difference
% 工况 ΔCD ΔCD ΔCL/CD 0 (无后缘变形) 0 0 0 0 1 (线性变形) -48.4 -40.5 +14.7 +12.4 2 (非线性变形) -50.7 -40.2 +22.3 +16.8 表 10 180°相位差时翼型小幅度俯仰的阻力特性和升阻比
Table 10. Drag characteristics and lift-drag ratio of airfoil small amplitude pitch motion at 180°phase difference
% 工况 ΔCD ΔCD ΔCL/CD 0 (无后缘变形) 0 0 0 0 1 (线性变形) +53.4 +44.3 -11.9 -9.7 2 (非线性变形) +53.4 +44.0 -11.9 -10.4 表 11 180°相位差时翼型大幅度俯仰的阻力特性和升阻比
Table 11. Drag characteristics and lift-drag ratio of airfoil large-amplitude pitch motion at 180°phase difference
% 工况 ΔCD ΔCD ΔCL/CD 0 (无后缘变形) 0 0 0 0 1 (线性变形) +102.2 +93.5 -28.9 -22.5 2 (非线性变形) +96.9 +86.6 -23.7 -16.6 -
[1] AJAJ R M, BEAVERSTOCK C S, FRISWELL M I. Morphing aircraft: The need for a new design philosophy[J]. Aerospace Science and Technology, 2015, 49: 154-166. http://d.wanfangdata.com.cn/periodical/05befc9f0dc72343a83805a52110b7dd [2] 许云涛. 智能变形飞行器发展及关键技术研究[J]. 战术导弹技术, 2017(2): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201702005.htmXU Y T. Research on the development and key technology of smart morphing aircraft[J]. Tactical Missile Technology, 2017(2): 26-33(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201702005.htm [3] 倪迎鸽, 杨宇. 自适应机翼翼型变形的研究现状及关键技术[J]. 航空工程进展, 2018, 9(3): 297-308. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201803002.htmNI Y G, YANG Y. Research on the status and key technology in morphing airfoil of adaptive wings[J]. Advance in Aeronautical Science and Engineering, 2018, 9(3): 297-308(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKGC201803002.htm [4] 白鹏, 陈钱, 徐国武, 等. 智能可变形飞行器关键技术发展现状及展望[J]. 空气动力学学报, 2019, 37(3): 426-443. doi: 10.7638/kqdlxxb-2019.0030BAI P, CHEN Q, XU G W, et al. Development status of key technologies and expectation about smart morphing aircraft[J]. Acta Aerodynamica Sinica, 2019, 37(3): 426-443(in Chinese). doi: 10.7638/kqdlxxb-2019.0030 [5] 祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814004.htmZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: A review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201814004.htm [6] SPILLMAN J J. The use of variable camber to reduce drag, weight and costs of transport aircraft[J]. The Aeronautical Journal, 1992, 96(951): 1-9. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10152423&previous=true&jid=AER&volumeId=96&issueId=951 [7] SOFLA A Y N, ELZEY D M, WADLEY H N G. An antagonistic flexural unit cell for design of shape morphing structures[C]//Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition. New York: ASME, 2004: 261-269. [8] ELZEY D M, SOFLA A Y N, WADLEY H N G. A bio-inspired high-authority actuator for shape morphing structures[C]//The International Society for Optics and Photonics, 2003: 92-100. [9] ELZEY D M, SOFLA A Y N, WADLEY H N G. A shape memory-based multifunctional structural actuator panel[J]. International Journal of Solids and Structures, 2005, 42(7): 1943-1955. doi: 10.1016/j.ijsolstr.2004.05.034 [10] STROUD H R, LEAL P B C, HARTL D J. Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section[C]//Conference on Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII. Bellingham: International Society for Optics and Photonics, 2018: 1-9. [11] YOKOZEKI T, SUGIURA A, HIRANO Y. Development of variable camber morphing airfoil using corrugated structure[J]. Journal of Aircraft, 2014, 51(3): 1023-1029. doi: 10.2514/1.C032573 [12] TSUSHIMA N, YOKOZEKI T, SU W H, et al. Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures[J]. Aerospace Science and Technology, 2019, 88: 244-257. doi: 10.1016/j.ast.2019.03.025 [13] WOODS B K S, FRISWELL M I. Structural characterization of the fish bone active camber morphing airfoil[C]//22nd AIAA/ASME/AHS Adaptive Structures Conference. Reston: AIAA, 2014: 1-11. [14] WOODS B K S, BILGEN O, FRISWELL M I. Wind tunnel testing of the fish bone active camber morphing concept[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(7): 772-785. doi: 10.1177/1045389X14521700 [15] RIVERO A E, WEAVER P M, COOPER J E, et al. Parametric structural modelling of fish bone active camber morphing aerofoils[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(9): 2008-2026. doi: 10.1177/1045389X18758182 [16] WOODS B K S, DAYYANI I, FRISWELL M I. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept[J]. Journal of Aircraft, 2015, 52(1): 307-319. doi: 10.2514/1.C032725 [17] 赵飞, 葛文杰, 张龙. 某无人机柔性机翼后缘变形机构的拓扑优化[J]. 机械设计, 2009, 26(8): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200908006.htmZHAO F, GE W J, ZHANG L. Topological optimization on the deformation mechanism of flexible trailing edge of certain pilot-less aircraft[J]. Journal of Machine Design, 2009, 26(8): 19-22(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXSJ200908006.htm [18] 朱鹏刚, 葛文杰, 张永红, 等. 基于SIMP和GA变形柔性机翼后缘的拓扑优化[J]. 机械科学与技术, 2009, 28(11): 1468-1472. doi: 10.3321/j.issn:1003-8728.2009.11.016ZHU P G, GE W J, ZHANG Y H, et al. Topology optimization for shape morphing compliant trailing edge using SIMP and GA[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(11): 1468-1472(in Chinese). doi: 10.3321/j.issn:1003-8728.2009.11.016 [19] BARBARINO S, PECORA R, LECCE L, et al. A novel SMA-based concept for airfoil structural morphing[J]. Journal of Materials Engineering and Performance, 2009, 18(5): 696-705. doi: 10.1007/s11665-009-9356-3 [20] 杨智春, 解江. 柔性后缘自适应机翼的概念设计[J]. 航空学报, 2009, 30(6): 1028-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200906013.htmYANG Z C, XIE J. Concept design of adaptive wing with flexible trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1028-1034(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200906013.htm [21] 杨智春, 党会学, 解江. 基于动网格技术的柔性后缘自适应机翼气动特性分析[J]. 应用力学学报, 2009, 26(3): 548-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200903028.htmYANG Z C, DANG H X, XIE J. Aerodynamic characteristics of flexible trailing edge adaptive wing by unstructured dynamic meshes[J]. Chinese Journal of Applied Mechanics, 2009, 26(3): 548-533(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX200903028.htm [22] 解江, 杨智春. 自适应机翼柔性翼肋的受控运动学规律研究[J]. 机械科学与技术, 2007, 26(7): 917-921. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200707023.htmXIE J, YANG Z C. Study of controlled kinematics of the flexible rib of adaptive wing[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(7): 917-921(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX200707023.htm [23] 解江, 杨智春, 党会学. 柔性后缘自适应机翼气动特性和操纵反效特性的比较分析[J]. 工程力学, 2009, 26(10): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910040.htmXIE J, YANG Z C, DANG H X. Comparative study on aerodynamics and control reversal characteristics of adaptive wings with flexible trailing edge[J]. Engineering Mechanics, 2009, 26(10): 245-251(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200910040.htm [24] ZHOU H, ZHU H, MAIN H H, et al. Modelling and aerodynamic prediction of fish bone active camber morphing airfoil[C]//2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Piscataway: IEEE Press, 2018: 559-565. [25] KUMAR D, ALI S F, AROCKIARAJAN A. Structural and aerodynamics studies on various wing configurations for morphing[J]. IFAC-Papers on Line, 2018, 51(1): 498-503. http://www.sciencedirect.com/science/article/pii/S2405896318302489 [26] HOLZMANN T. Mathematics, numerics, derivations and OpenFOAM [M]. Loeben: Holzmann CFD, 2016: 91-112. [27] MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics[M]. Berlin: Springer, 2016: 734-738. [28] JASAK H. Dynamic mesh handling in Open FOAM[C]//AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2009: 1-10. [29] LEE T, GERONTAKOS P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512: 313-341. http://adsabs.harvard.edu/abs/2004jfm...512..313l [30] 郭辉, 连淇祥. 飞行器动态下俯过程中的负阻力现象[J]. 北京航空航天大学学报, 2004, 30(7): 623-626. https://bhxb.buaa.edu.cn/CN/abstract/abstract10451.shtmlGUO H, LIAN Q X. Negative drag phenomena of aircraft in dynamic pitching process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(7): 623-626(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract10451.shtml