留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压高剪切率下密封环缝隙流体动态润滑特性

张乐涛 刘志奇 李占龙 徐彦 高宇

张乐涛, 刘志奇, 李占龙, 等 . 高压高剪切率下密封环缝隙流体动态润滑特性[J]. 北京航空航天大学学报, 2021, 47(6): 1261-1270. doi: 10.13700/j.bh.1001-5965.2020.0144
引用本文: 张乐涛, 刘志奇, 李占龙, 等 . 高压高剪切率下密封环缝隙流体动态润滑特性[J]. 北京航空航天大学学报, 2021, 47(6): 1261-1270. doi: 10.13700/j.bh.1001-5965.2020.0144
ZHANG Letao, LIU Zhiqi, LI Zhanlong, et al. Hydrodynamic lubrication characteristics of piston ring gap under high pressure and high shear rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1261-1270. doi: 10.13700/j.bh.1001-5965.2020.0144(in Chinese)
Citation: ZHANG Letao, LIU Zhiqi, LI Zhanlong, et al. Hydrodynamic lubrication characteristics of piston ring gap under high pressure and high shear rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1261-1270. doi: 10.13700/j.bh.1001-5965.2020.0144(in Chinese)

高压高剪切率下密封环缝隙流体动态润滑特性

doi: 10.13700/j.bh.1001-5965.2020.0144
基金项目: 

国家自然科学基金 51975396

山西省自然科学基金 201701D121070

山西省科技重大专项国际合作项目 GJ2016-02-2

详细信息
    通讯作者:

    刘志奇, E-mail: liuzhiqi@tyust.edu.cn

  • 中图分类号: TH322;TH137.51

Hydrodynamic lubrication characteristics of piston ring gap under high pressure and high shear rate

Funds: 

National Natural Science Foundation of China 51975396

Natural Science Foundation of Shanxi 201701D121070

International Cooperation Project of Science and Technology Major Program of Shanxi Province GJ2016-02-2

More Information
  • 摘要:

    为减少高压高剪切率下热效应对密封环缝隙流体润滑性能的影响,以密封环缝隙流体剪切速度梯度、壁面剪切应力和油膜温升表征摩擦副润滑性能,采用RNG k-ε湍流模型,通过Workbench建立流-固-热多场模型,计算得到不同主轴转角下缝隙流动形态变化规律和温升前后油膜厚度变化量、不同L型槽内外径比及长径比下流速流型分布规律、壁面剪切应力、温度分布和热变形量。研究结果表明:密封环L型槽黏性底层随剪切速度增大而增厚,油膜厚度随运动周期增加而变薄;当L型槽内外径比小于1.07时,随比值减小密封环壁面剪切应力不断增大,最大变化率为7%;密封环L型槽长径比在0.19时平均壁面剪切应力达到最大,当长径比继续增大时,油膜区剪切速度梯度逐渐减小,油膜温升和热变形亦随之减小。研究结果可为马达优化以减少能量损失和改善密封环润滑条件提供理论指导和依据。

     

  • 图 1  密封环缝隙结构简图与受力分析

    Figure 1.  Structure diagram and stress analysis of piston ring gap

    图 2  密封环复合运动形式

    Figure 2.  Compound movement form of piston ring

    图 3  密封环缝隙流体动力润滑

    Figure 3.  Hydrodynamic lubrication of piston ring gap

    图 4  密封环计算区域和局部网格分布

    Figure 4.  Calculation area and local grid distribution of piston ring

    图 5  多物理场耦合实现原理

    Figure 5.  Principle of multiple physical fields coupling

    图 6  仿真结果与理论计算结果对比

    Figure 6.  Comparison between simulation results and theoretical calculation results

    图 7  网格无关性验证

    Figure 7.  Grid independence verification

    图 8  不同主轴转角下油液流动形态

    Figure 8.  Oil flow pattern under different angles of principal axis

    图 9  初始时刻油膜厚度分布三维图

    Figure 9.  Three-dimensional distribution of oil film thickness at initial moment

    图 10  运动5个周期后油膜厚度的变化

    Figure 10.  Change of oil film thickness after 5 movement cycles

    图 11  不同内外径比和不同长径比下缝隙流体流速流线和温度分布云图

    Figure 11.  Velocity streamline and temperature distribution contour of flow in gap under different internal and external diameter ratios and different length-to-diameter ratios

    图 12  不同内外径比下密封环壁面剪切应力变化

    Figure 12.  Change of piston ring's wall shear stress under different intenal and external diameter ratios

    图 13  不同长径比下密封环壁面剪切应力变化

    Figure 13.  Change of piston ring's wall shear stress under different length-to-diameter ratios

    图 14  密封环在多物理场下的变形

    Figure 14.  Deformation of piston ring in multiple physical fields

    表  1  密封环参数设定

    Table  1.   Parameter setting of piston ring

    参数 取值范围
    L型槽长L/密封环宽度D 0.13~0.27
    L型槽外径d2/密封环内径d1 1.03~1.08
    密封环密度ρm/(kg·m-3) 7 801
    弹性模量E/MPa 2.07×105
    泊松比ε 0.29
    下载: 导出CSV

    表  2  密封环工况条件

    Table  2.   Working condition of piston ring

    环境参数 数值
    初始缝隙高度δ0/μm 10
    工作压差Δ P/MPa 35
    剪切速度vx/(m·s-1) 6
    负载/(N·m) 889
    进油温度Ti/℃ 45
    Fe热膨胀系数/℃ 1.0×10-5
    初始润滑油黏度μ0/(mm2·s-1) 68
    下载: 导出CSV

    表  3  不同长径比下密封环的变形量与润滑特性

    Table  3.   Deformation and lubrication characteristics of piston ring under different length-to-diameter ratio

    L/D 三维模型 最大变形/μm 最大应力/MPa 最小油膜厚度/μm
    0.13 2.62 159 0.8
    0.16 2.69 164 0.75
    0.19 2.76 169 0.70
    0.22 2.71 165 0.73
    0.25 2.65 159 0.76
    0.27 2.59 154 0.79
    下载: 导出CSV
  • [1] 汤何胜, 訚耀保, 李晶, 等. 计及表面变形的轴向柱塞泵滑靴副热流体动力润滑分析[J]. 机械工程学报, 2017, 53(4): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201704023.htm

    TANG H S, YIN Y B, LI J, et al. Thermo-hydrodynamic lubrication analysis of slipper pair in axial piston pump considering surface deformation[J]. Journal of Mechanical Engineering, 2017, 53(4): 168-176(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201704023.htm
    [2] 尹延国, 邢大淼, 尤涛, 等. 基于有限元法的面接触摩擦热流分配系数反推研究[J]. 摩擦学学报, 2012, 32(6): 592-598. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201206011.htm

    YIN Y G, XING D M, YOU T, et al. Back-calculation of heat transfer coefficient of surface contact friction surface based on finite element method[J]. Journal of Tribology, 2012, 32(6): 592-598(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201206011.htm
    [3] HOUG G R. Drag characteristics of V-groove and transverse curvature riblets[J]. AIAA, 1980, 72(3): 168-184. doi: 10.2514/5.9781600865466.0168.0184
    [4] 马纪明, 申亚勇, 李齐林. 基于CFD的斜盘/滑靴副油膜特性分析[J]. 北京航空航天大学学报, 2016, 42(2): 265-272. doi: 10.13700/j.bh.1001-5965.2015.0107

    MA J M, SHEN Y Y, LI Q L. Analysis of oil film characteristics of swash plate/slipper pair based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 265-272(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0107
    [5] 刘赵淼, 王国斌, 申峰. 基于Navier滑移的油膜缝隙微流动特性数值分析[J]. 机械工程学报, 2011, 47(21): 104-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201121017.htm

    LIU Z M, WANG G B, SHEN F. Numerical analysis of oil film flow in micro gap with Navier slip boundary conditions[J]. Journal of Mechanical Engineering, 2011, 47(21): 104-110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201121017.htm
    [6] 吴承伟, 胡令臣. 界面滑移和油膜破裂[J]. 大连理工大学学报, 1993, 33(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG199302008.htm

    WU C W, HU L C. Wall slippage and oil film collapse[J]. Journal of Dalian University of Technology, 1993, 33(2): 172-178(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG199302008.htm
    [7] BERGADA J M, KUMAR S, DAVIES D L, et al. A complete analysis of axial piston pump leakage and output flow ripples[J]. Applied Mathematical Modelling, 2012, 36(4): 1731-1751. doi: 10.1016/j.apm.2011.09.016
    [8] AKSOY S, AKSIT M F. A fully coupled 3D thermo-elasto-hydrodynamics model for a bump type compliant foil journal bearing[J]. Tribology International, 2015(82): 110-122. http://www.sciencedirect.com/science/article/pii/S0301679X14003491
    [9] IVANTYSYNOVA M, HUANG C H, BEHR R. Measurements of elasto-hydrodynamic pressure field in the gap between piston and cylinder[C]//Bath Workshop on Power Transmission and Motion Control, 2005: 451-465.
    [10] IVANTYSYNOVA M, PELOSI M. The impact of axial piston machines mechanical parts constraint conditions on the thermo-elasto hydrodynamic lubrication analysis of the fluid film interfaces[J]. International Journal of Fluid Power, 2013, 14(3): 35-51. doi: 10.1080/14399776.2013.10801412
    [11] PELOSI M, IVANTYSYNOVA M. A novel fluid structure interaction model for lubricating gaps of piston machines[J]. Fluid Structure Interaction, 2009, 105(5): 13-23. http://www.researchgate.net/publication/271423639_A_novel_fluid-structure_interaction_model_for_lubricating_gaps_of_piston_machines
    [12] PELOSI M, IVANTYSYNOVA M. Heat transfer and thermal elastic deformation analysis on the piston/cylinder interface of axial piston machines[J]. Journal of Tribology, 2012, 134(10): 1-15. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JOTRE9000134000004041101000001&idtype=cvips&gifs=Yes
    [13] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7): 2065-2090. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201607003.htm

    ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2065-2090(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201607003.htm
    [14] 吴波, 丛茜, 杨利, 等. 具有仿生条纹结构的内燃机活塞疲劳特性回归分析[J]. 农业工程学报, 2016, 32(4): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201604007.htm

    WU B, CONG Q, YANG L, et al. Regression analysis of fatigue property of internal combustion engine piston with bionic stripe structure[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 48-55(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201604007.htm
    [15] CHOI K S. Near-wall structure of a turbulent boundary layer with riblets[J]. Journal of Fluid Mechanics, 1989, 208: 417-458. doi: 10.1017/S0022112089002892
    [16] LIU Z H, DONG W C, XIONG Y, et al. Analysis on factors and mechanism of drag reduction by grooved surface[J]. Journal of Ship Mechanics, 2007, 11(6): 820-831. http://en.cnki.com.cn/Article_en/CJFDTOTAL-CBLX200706001.htm
    [17] 童宝宏, 杨文, 刘庆运. 柱塞泵螺旋沟槽式柱塞-铜套副缝隙流场流动与均压特性[J]. 农业工程学报, 2018, 34(2): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802008.htm

    TONG B H, YANG W, LIU Q Y. Flowing and pressure-balancing characteristics of clearance field in helical grooved piston-copper sleeve pair of piston pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(2): 55-63(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201802008.htm
    [18] CHO I S, BEAK I H, JO J C, et al. Lubrication characteristics of dual piston ring in bent-axis type piston pumps[J]. Journal of Mechanical Science and Technology, 2010, 24(6): 1363-1368. doi: 10.1007/s12206-010-0342-3
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  64
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-16
  • 录用日期:  2020-06-05
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答