Self-adaptive piecewise fitting filtering method for test data in continuous sweeping angle of attack
-
摘要:
针对常用的阶梯变迎角数据处理方法处理连续变迎角试验数据时,不能去除低频振动分量的问题,基于试验数据中的近似对称、局部线性等特点,提出一种将数据进行分段二项式拟合的处理方法,并详细论述其基本原理,重点介绍基于方差极小值动态确定数据分段长度的方法。基于测试信号的实验结果表明所提方法可将低频分量信号滤除近70%,有效提高数据处理精度。经标模试验测试验证,所提方法可成功应用于某些试验。
Abstract:When the traditional step sweeping attack angle data processing method is used for directly processing the test data of continuous sweeping attack angle test, the low-frequency vibration component cannot be removed. Based on the characteristics of approximate symmetry and local linearity in the test data, a piecewise binomial fitting method is presented. Principle of the method is presented, and its minimum variance based piecewise length determination is introduced in details. The experimental results based on the test signal show that the method can filter the low-frequency component signal by nearly 70%, effectively improving the data processing accuracy. The method is also verified by common mode test, and has been successfully applied to some model tests.
-
表 1 试验数据分析结果
Table 1. Analyzed results of test data
y powerk/% power_pk/% max_dertak/% max_derta_pk/% dertak/10-6 derta_pk/10-6 y1 0.104 4 0.115 2 0.222 3 0.245 9 -10.07 -11.11 y2 0.035 7 0.039 4 0.083 3 0.092 0 7.91 8.73 34.24 34.24 37.40 37.40 -78.52 -78.52 表 2 滤波效果分析
Table 2. Analyzed filtering results
α/(°) 阶梯数据U0/V 滤波前数据U1/V 滤波后数据U2/V 滤波前偏差e1/% 滤波后偏差e2/% -6.45 0.959 8 0.955 8 0.955 2 -0.41 -0.47 -4.30 0.911 6 0.912 4 0.908 7 0.09 -0.32 -3.24 0.878 7 0.880 4 0.881 1 0.19 0.28 -2.20 0.832 8 0.829 9 0.833 8 -0.35 0.12 -1.79 0.803 1 0.807 2 0.805 8 0.52 0.33 -1.16 0.762 7 0.767 1 0.769 2 0.58 0.85 -0.13 0.734 0 0.735 9 0.735 3 0.27 0.19 0.28 0.758 8 0.756 9 0.761 3 -0.25 0.33 0.91 0.805 4 0.809 5 0.804 7 0.52 -0.08 1.97 0.805 2 0.812 6 0.812 1 0.93 0.86 3.02 0.809 4 0.809 3 0.812 8 -0.01 0.41 4.08 0.851 6 0.851 9 0.851 6 0.04 0 6.20 0.904 2 0.902 9 0.902 8 -0.13 -0.14 -
[1] 舒海峰, 许晓斌, 孙鹏. 高超声速风洞多天平测力试验技术研究[J]. 实验流体力学, 2014, 28(4): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201404008.htmSHU H F, XU X B, SUN P. Technology investigation on force test with multi-balance in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 49-53(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201404008.htm [2] 谢艳, 李平, 王瑞波, 等. 2.4米跨声速风洞连续变攻角测力试验技术研究[J]. 气动研究与发展, 2009, 19(3): 10-14.XIE Y, LI P, WANG R B, et al. An experimental investigation on force measurement of continuous angle of attack traverses in 2.4 m transonic wind tunnel[J]. Aerodynamics Research and Development, 2009, 19(3): 10-14(in Chinese). [3] 魏志, 谢艳, 吴军强, 等. 连续变攻角测力试验技术在大型暂冲式跨声速风洞中的应用[J]. 实验流体力学, 2011, 25(4): 99-102. doi: 10.3969/j.issn.1672-9897.2011.04.019WEI Z, XIE Y, WU J Q, et al, Application of continuous sweeping force measuring technology in large intermittent transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 99-102(in Chinese). doi: 10.3969/j.issn.1672-9897.2011.04.019 [4] 黄辉, 黄昊宇, 凌忠伟, 等. Φ0.5米高超声速风洞连续变攻角测力试验数据处理方法研究[J]. 计算机测量与控制, 2019, 27(8): 281-285. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201908060.htmHUANG H, HUANG H Y, LING Z W, et al. Research on data processing method of continuous variable angle of attack force in Φ0.5 m hypersonic wind tunne[J]. Computer Measurement & Control, 2019, 27(8): 281-285(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201908060.htm [5] 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报, 2015, 36(1): 86-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501007.htmTANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 86-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201501007.htm [6] 张俊. 工程实用的飞行器低速风洞连续扫描试验技术研究[D]. 长沙: 国防科学技术大学, 2007.ZHANG J. Investigation of the continuous scan technology on engineer to aircraft in low speed wind tunnel[D]. Changsha: National University of Defense Technology, 2007(in Chinese). [7] 唐乔乔, 张卫国, 刘忠华, 等. 8 m×6 m风洞特大迎角机构连续扫描试验技术研究与应用[J]. 实验流体力学, 2012, 26(2): 81-85. doi: 10.3969/j.issn.1672-9897.2012.02.018TANG Q Q, ZHANG W G, LIU Z H, et al. Research and application of the continuous scan technique to the high angle of attack equipment in 8 m×6 m wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 81-85(in Chinese). doi: 10.3969/j.issn.1672-9897.2012.02.018 [8] 张双喜, 盖文, 褚卫华, 等. 风洞试验连续变攻角控制策略[J]. 计算机测量与控制, 2014, 22(2): 390-396. doi: 10.3969/j.issn.1671-4598.2014.02.025ZHANG S X, GAI W, CHU W H, et al. Control strategy of uniform changing attack angle in wind tunnel[J]. Computer Measurement & Control, 2014, 22(2): 390-396(in Chinese). doi: 10.3969/j.issn.1671-4598.2014.02.025 [9] 孟宝清, 韩桂来, 姜宗林. 结构振动对大型激波风洞气动力测量的干扰[J]. 力学学报, 2016, 48(1): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201601012.htmMENG B Q, HAN G L, JIANG Z L. Theoretical investigation on aerodynamic force measurement interfered by structural vibrations in large shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 102-110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201601012.htm [10] 程忠宇, 陈宏, 张琦. 多加速度计振动分离惯性补偿测力技术[J]. 流体力学实验与测量, 1993, 13(4): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199904012.htmCHENG Z Y, CHEN H, ZHANG Q. Inertia compensation technology based on multi-accelerometer vibration separating[J]. Experiments and Measurements in Fluid Mechanics, 1993, 13(4): 57-61(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199904012.htm [11] 吕金州, 张小庆, 陈光雄, 等. 基于惯性补偿的脉冲风洞测力天平瞬态研究[J]. 振动与冲击, 2018, 37(2): 216-222. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201802032.htmLV J Z, ZHANG X Q, CHEN G X, et al. Transient simulation for dynamic output of force measuring balance in animpulse combustion wind tunnel based on intertia compensation[J]. Journal of Vibration and Shock, 2018, 37(2): 216-222(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201802032.htm [12] 艾迪, 许晓斌, 王雄. 风洞天平动态特性多阶惯性补偿技术研究[J]. 实验流体力学, 2018, 32(4): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201804011.htmAI D, XU X B, WANG X. Investigation of wind tunnel balance dynamic characteristics' multi-order inertial compensation[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 87-92(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201804011.htm [13] 张鹏, 谢艳, 孙宁, 等. 基于改进小波阈值函数的风洞连续信号降噪方法[J]. 计算机测量与控制, 2014, 22(4): 1300-1302. doi: 10.3969/j.issn.1671-4598.2014.04.103ZHANG P, XIE Y, SUN N, et al. Wind tunnel continuous signal de-noising method based on improved thresholding function[J]. Computer Measurement & Control, 2014, 22(4): 1300-1302(in Chinese). doi: 10.3969/j.issn.1671-4598.2014.04.103 [14] 张鹏, 刘晨雨, 曹宇晴. 基于Matlab GUI的风洞信号小波分析处理软件[J]. 兵工自动化, 2018, 37(1): 61-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201801016.htmZHANG P, LIU C Y, CAO Y Q. Analysis and processing software of wind tunnel signals on the basis of the Matlab GUI programming[J]. Ordnance Industry Automation, 2018, 37(1): 61-67(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201801016.htm [15] 张鹏, 魏志, 王春, 等. 基于小波变换的风洞连续信号降噪分析[J]. 兵工自动化, 2013, 32(5): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201305016.htmZHANG P, WEI Z, WANG C, et al. Analysis of wind tunnel continuous signal de-noising based on wavelet transformation[J]. Ordnance Industry Automation, 2013, 32(5): 63-67(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201305016.htm