留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微重力下两相控温型储液器内气液界面仿真分析

周振华 孟庆亮 赵振明

周振华, 孟庆亮, 赵振明等 . 微重力下两相控温型储液器内气液界面仿真分析[J]. 北京航空航天大学学报, 2021, 47(6): 1152-1160. doi: 10.13700/j.bh.1001-5965.2020.0153
引用本文: 周振华, 孟庆亮, 赵振明等 . 微重力下两相控温型储液器内气液界面仿真分析[J]. 北京航空航天大学学报, 2021, 47(6): 1152-1160. doi: 10.13700/j.bh.1001-5965.2020.0153
ZHOU Zhenhua, MENG Qingliang, ZHAO Zhenminget al. Numerical analyses of liquid-vapor interface in two-phase thermal-controlled accumulator under microgravity condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1152-1160. doi: 10.13700/j.bh.1001-5965.2020.0153(in Chinese)
Citation: ZHOU Zhenhua, MENG Qingliang, ZHAO Zhenminget al. Numerical analyses of liquid-vapor interface in two-phase thermal-controlled accumulator under microgravity condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1152-1160. doi: 10.13700/j.bh.1001-5965.2020.0153(in Chinese)

微重力下两相控温型储液器内气液界面仿真分析

doi: 10.13700/j.bh.1001-5965.2020.0153
基金项目: 

国家自然科学基金 51806010

详细信息
    通讯作者:

    孟庆亮, E-mail: qlmeng@mail.ustc.edu.cn

  • 中图分类号: V416;TK124

Numerical analyses of liquid-vapor interface in two-phase thermal-controlled accumulator under microgravity condition

Funds: 

National Natural Science Foundation of China 51806010

More Information
  • 摘要:

    两相控温型储液器对机械泵驱动两相流体回路的稳定运行起到关键作用,而储液器内部气液分布状态是其控温性能的决定性因素之一。在轨微重力条件下,储液器内两相流动特性与地面状态差别巨大,这将给储液器的设计带来较大难度。针对两相控温型储液器在轨微重力下的两相工质分布特性,通过计算流体力学(CFD)方法对其内两相流动行为进行数值模拟。通过使用连续表面张力模型计算表面张力,使用多相流计算的流体体积分数方法对两相控温型储液器内气液界面形态的发展进行了追踪预测,并与理论解进行对比,结果吻合一致。通过对两相控温型储液器在不同Bond数、接触角、工质充灌量等参数下的仿真分析,得到了不同条件下储液器内气液运动及分布情况,结果表明:两相控温型储液器内气液界面状态与储液器尺寸、壁面浸润性、工质充灌量相关。研究结果可以为微重力下两相控温型储液器内气液界面的控制提供理论依据,并能指导储液器研制及在轨应用。

     

  • 图 1  两相控温型储液器示意图

    Figure 1.  Schematic of two-phase thermal-controlled accumulator

    图 2  储液器网格模型

    Figure 2.  Grid model of accumulator

    图 3  微重力条件下圆柱形腔体内气液界面形状

    Figure 3.  Shape of liquid-vapor interface in cylindrical cavity under microgravity condition

    图 4  理论解预测与NASA落塔试验结果对比[17]

    Figure 4.  Comparison between theoretical solution prediction and NASA drop tower experimental results[17]

    图 5  静液面仿真结果与理论解对比

    Figure 5.  Comparison between static interface results and theoretical solutions

    图 6  不同接触角仿真结果(BN=0)

    Figure 6.  Simulation results with different contact angles (BN=0)

    图 7  液面爬升高度随接触角变化曲线

    Figure 7.  Variation of height of liquid level with contact angles

    图 8  不同Bond数仿真结果(θc=5°)

    Figure 8.  Simulation results with different bond numbers (θc=5°)

    图 9  液面爬升高度随Bond数变化曲线

    Figure 9.  Variation of height of liquid level with bond number

    图 10  不同Bond数下,液面爬升高度随接触角变化曲线

    Figure 10.  Variation of height of liquid level with contact angles under different Bond number

    图 11  不同接触角下液面爬升高度随Bond数变化曲线

    Figure 11.  Variation of height of liquid level with bond number under different contact angles

    图 12  初始液面高度140 mm时各时刻气液界面形状

    Figure 12.  Variation of liquid-vapor interface shapes with time at initial liquid level height of 140 mm

    图 13  BN=0.025时各时刻气液界面形状

    Figure 13.  Variation of liquid-vapor interface shapes with time at BN=0.025

    图 14  BN=0.1时各时刻气液界面形状

    Figure 14.  Variation of liquid-vapor interface shapes with time at BN=0.1

    图 15  BN=1时各时刻气液界面形状

    Figure 15.  Variation of liquid-vapor interface shapes with time at BN=1

    图 16  BN=10时各时刻气液界面形状

    Figure 16.  Variation of liquid-vapor interface shapes with time at BN=10

    表  1  氨工质参数

    Table  1.   Parameters of ammonia as working medium

    参数 液相氨 气相氨
    密度ρ/(kg·m-3) 610 0.689
    黏度μ/(kg·(m·s-1)-1) 1.52×10-4 1.015×10-5
    下载: 导出CSV
  • [1] 李春林. 空间光学遥感器热控技术研究[J]. 宇航学报, 2014, 35(8): 863-870. doi: 10.3873/j.issn.1000-1328.2014.08.001

    LI C L. Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8): 863-870(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.001
    [2] 赵振明, 孟庆亮, 张焕冬, 等. CCD器件用机械泵驱动两相流体回路仿真与试验[J]. 北京航空航天大学学报, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519

    ZHAO Z M, MENG Q L, ZHANG H D, et al. Simulation and experimental study of mechanically pumped two-phase loop for CCD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 893-901(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0519
    [3] ES J V, GERNER H J V, BENTHEM R C V, et al. Component developments in europe for mechanically pumped loop systems (MPLS) for cooling applications in space[C]//46th International Conference on Environmental Systems, 2016: 96-110.
    [4] STARK J A, BRADSHAW R D, BLATT M H. Low-G fluid behavior technology summaries: NASA CR-134746[R]. Washington, D.C. : NASA STI/Recon Technical Report, 1974: 75-82.
    [5] AHUJA V, HOSANGADI A, MATTICK S, et al. Computational analyses of pressurization in cryogenic tanks[C]//AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2008: 47-52.
    [6] KASSEMI M, KARTUZOVA O, HYLTON S. Validation of tow-phase CFD models for propellant tank self-pressurization: Crossing fluid types, scales, and gravity levels[J]. Cryogenics, 2017, 89: 1-15. http://www.sciencedirect.com/science/article/pii/S0011227517302576
    [7] WENDL M C, HOCHSTEIN J I, SASMAL G P, et al. Modeling of jet-induced geyser formation in a reduced gravity environment: AIAA-1991-0803[R]. Reston: AIAA, 1991.
    [8] BREISACHER K, MODER J. Preliminary simulations of the ullage dynamics in microgravity during the jet mixing portion of tank pressure control experiments: AIAA-2015-3853[R]. Reston: AIAA, 2015.
    [9] KARTUZOVA O, KASSEMI M. Modeling ullage dynamics of tank pressure control experiment during jet mixing in microgravity[C]//52nd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2016.
    [10] DAVID C, KASSEMI M. The zero boil-off tank (ZBOT) experiment role in development of cryogenic fluid storage and transfer technologies: NASA-E-664086[R]. Washington, D.C. : NASA, 2015: 7-12.
    [11] DAVID C, KASSEMI M. The zero boil-off tank experment contributions to the development of cryogenic fluid management: NASA GRC-E-DAA-TN24539[R]. Washington, D.C. : NASA, 2016: 13-19.
    [12] KASSEMI M, HYLTON S, KARTUZOVA O. Zero-boil-off tank(ZBOT) experiment-CFD self-pressurization model validation with ground-based & microgravity results[C]//AIAA Propulsion and Energy Forum, Joint Propulsion Conference. Reston: AIAA, 2018: 43-49.
    [13] 李章国, 刘秋生, 纪岩. 航天器贮箱气液自由界面追踪数值模拟[J]. 空间科学学报, 2008, 28(1): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200801014.htm

    LI Z G, LIU Q S, JI Y. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft[J]. Chinese Journal of Space Science, 2008, 28(1): 69-73(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB200801014.htm
    [14] 胡齐, 李永, 潘海林. 微重力环境下大叶片板式贮箱内流体行为的数值仿真与实验验证[J]. 空间控制技术与应用, 2013, 39(2): 58-62. doi: 10.3969/j.issn.1674-1579.2013.02.011

    HU Q, LI Y, PAN H L. Numerical simulation and experiment verification of fluid behavior in the vane type tank with big vanes in microgravity environment[J]. Aerospace Control and Application, 2013, 39(2): 58-62(in Chinese). doi: 10.3969/j.issn.1674-1579.2013.02.011
    [15] BRACKBILL U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
    [16] 杨旦旦, 岳宝增, 祝乐梅. 用打靶法求解微重力下矩形和旋转对称贮箱内静液面形状[J]. 空间科学学报, 2012, 32(1): 85-91. https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201201014.htm

    YANG D D, YUE B Z, ZHU L M. Solving shapes of hydrostatic surface in rectangular and revolving symmetrical tanks under microgravity using shooting method[J]. Chinese Journal of Space Science, 2012, 32(1): 85-91(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJKB201201014.htm
    [17] LEON J, HASTINGS L, RUTHERFORD R. Low gravity liquid-vapor interface shapes in axisymmetric containers and a computer solution: NASA TM X-53790[R]. Washington, D.C. : NASA, 1968: 23-30.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  680
  • HTML全文浏览量:  252
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-21
  • 录用日期:  2020-08-07
  • 网络出版日期:  2021-06-20

目录

    /

    返回文章
    返回
    常见问答